УДК 664.144
И. Ю. Алексанян, С. Б. Попова, С. В. Синяк
ИССЛЕДОВАНИЕ ПРОЦЕССОВ СУШКИ ГРАНУЛИРОВАННЫХ ПРОДУКТОВ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ
В настоящее время большое внимание уделяется нетрадиционным способам переработки сырья растительного происхождения, производству сухих кусковых, порошковых и гранулированных продуктов. Однако внедрение и надежное экономичное функционирование данных технологий сдерживается отсутствием надежных способов и конструкций для экспан-дирования, гранулирования и сушки.
Экспандированный структурированный комбикорм является интересной альтернативой традиционным концентратам для сельскохозяйственных животных в виде гранул или кормовым добавкам.
Под экспандированным структурированным комбикормом понимается комбикорм, прошедший гидротермическую обработку в экспандере без последующего гранулирования. Экспандер работает как экструдер по принципу ИТ8Т (высокая температура - короткое время).
Обработанный продукт свободен от патогенных бактерий, улучшаются его питательные свойства, повышается доля защищенных протеина и крахмала. Экспандат хорошо смешивается с другими сырыми компонентами и сохраняет стабильность в смесях. При промежуточном хранении не происходит расслоения смеси и у животных нет возможности для селективного поедания корма. Экономия дорогих белковых комбикормов дает преимущество экспандированному комбикорму.
В Институте физиологии животных (университет г. Геттинген, Германия) проводили опыты по влиянию тепловой обработки с применением различных методов предварительного измельчения, кондиционирования и механического воздействия на антипитательные факторы в соевых бобах, а также на рост бройлеров [1]. Данная комплексная обработка в гидротермическом реакторе, в смесителе-кондиционере и экспандере с «гибкой» заторной дисковой вставкой при различной степени диспергирования (дробления) приводит к лучшему распределению вносимой энергии. Результаты скармливания бройлерам комбикормов с соевыми бобами показали существенную прибавку птицы в живом весе. Эта система более «бережная», чем обычная обработка в экструдере, где процессы ведутся при чрезмерном температурном режиме.
Производство кормов для рыб и креветок показало, что использование экспандера/экструдера ОЕЕ как гибкого автоматизированного модуля обеспечивает осциллирующие режимы и при точном дозировании сухого вещества, жидкостей, пара и воды позволяет получать конечный продукт высокого качества.
Для получения качественной продукции целесообразна «бережная» сушка и нанесение жидких микрокомпонентов методом напыления при варьируемых параметрах обезвоживания и размерах гранул.
Данная технология позволяет проводить расщепление крахмала, производить плавающие или медленно тонущие гранулы для рыб с содержанием жира до 30 %, стабильные в воде, устойчивые к истиранию гранулы диаметром от 2 до 12 мм для креветок и других ракообразных, корма для мальков в виде гранулированной крошки (от 0,1 до 2 мм).
Комбикормовые предприятия и птицефабрики устанавливают в основном экспандеры зарубежных фирм. Наряду с этим в АО «КБ Химмаш» (г. Москва) был разработан и изготовлен опытный образец экспандера для комбикормов (на базе экспандеров, применяемых при производстве синтетического каучука), который смонтирован на Денежниковском комбикормовом заводе Рязанской области [2].
Учитывая актуальность разработки и внедрения данных технологий, особенно в Астраханском регионе, ведутся комплексные исследования режимных параметров экспандирования и сушки гранулированных кормовых и пищевых продуктов с целью оптимизации, моделирования и прогнозирования процессов производства данной продукции.
Совместно с ООО «Вулкан» и «АНИИТИВУ» скомпонована, модернизирована и смонтирована линия по производству экспандированных -экструдированных гранулированных продуктов. Изготовлены опытные партии кормовых и пищевых продуктов, подкрепленные актами дегустации и промышленных испытаний эффективности скармливания экструдированного фуражного зерна и отходов зернового производства с добавками сапонитов, показавшими ежедневный прирост для поросят 240-460 г, для свиней 480-670 г на представителя при 100 % выживаемости поголовья.
Разработка новой технологии и техники сушки - это нетрадиционные аппаратурно-технологические решения и новые подходы к описанию процесса, позволяющие выбрать рациональный способ сушки; решить задачи прогнозирования явлений, процессов, систем; найти пути резкого повышения эффективности процесса сушки и сушильного оборудования. Эта технология требует проведения комплексных исследований.
Проведены исследования основных термодинамических закономерностей взаимодействия ряда характерных пищевых и кормовых продуктов с водой [3].
Статика процессов взаимодействия с водой и анализ изотерм сорбции позволяют установить и количественно оценить характер изменения термодинамических составляющих уравнения Гиббса - Гельмгольца для изохор-но-изобарно-изотермического процесса AF = AE-T-AS (AS;AE - соответственно изменения внутренней энергии (энтальпии) и энтропии, по влагосо-держанию Up при Р , T = const), продифференцировав которое получим
где энтропийная составляющая свободной
9AF
диг
- T
T ,Р
T ,Р
T ,Р
энергии т Э(А£) для растительных продуктов играет значительную роль.
■ дир
Получены зависимости свободной, внутренней, связанной энергии и термоградиентного коэффициента 5 от влагосодержания и температуры.
Так, в частности, для измельченной гранулированной тыквы влажность границы первой зоны = 0,3 , второй - = 0,6 , третьей = 0,79,
четвертой W4 = 0,9 .
При > 0:
= Дт=ят 1п л„ =
= ят((0,068333 ■ Т -17,221667) ■ Шр + (-0,006833 ■ Т -1,217833));
= Я(-Т)((0,136666 ■ Т -17,221667) ■ Шр + (-0,13666 ■ Т -1,217833) ;
5 р =-------------1------------х
р Т(0,068333 Т -17,221667) .
х ((0,136666 ■ Т -17,221667) ■ Шр + (-0,13666 ■ Т -1,217833)). При 0,3 < Ж2 < 0,6:
Г ЭД^ Л
VЭШр у
V р У
= ЯТ((-0,001133 ■ Т +1,599067) ■ Шр + (0,014 ■ Т - 6,862));
= Я(-Т)((-0,002266 ■ Т +1,599067) ■ Шр + (0,028 ■ Т - 6,862) ;
5 =---------------1----------((-0,002266 ■ Т +1,599067) ■ Шр + (0,028 ■ Т - 6,862)).
р Т (-0,001133 ■ Т +1,599067)
При 0,6 < Ж2 < 0,78:
Д^ = ЯТ((-0,0350867 ■ Т +13,9645933) ■ Шр + (0,0343867 ■ Т -14,2857933));
= Я(-Т)((-0,0701734- Т +13,9645933) ■ Шр + (0,0687734- Т -14,2857933) ;
х ((-0,0701734 ■ Т +13,9645933) ■ Шр + (0,0687734 ■ Т -14,2857933)).
При 0,79 < Ш2 < 0,9:
Д^ = ЯТ((-0,0363633 ■ Т +13,0180567) ■ Шр + (0,0353933 ■ Т -13,5375467));
ЭШр
= Я(-Т)((-0,0727266■ Т +13,0180567) ■ Шр + (0,0707866- Т -13,5375467) ;
* 1
5 р =---------------------------х
р Т(-0,0363633 ■ Т +13,0180567)
х ((-0,0727266 Т +13,0180567) ■ Шр + (0,0707866 ■ Т -13,5375467)).
Проведены исследования структурно-механических и теплофизических свойств продуктов как объектов сушки. Изучена истинная и физическая плотность ряда продуктов. Для унификации различных макропараметров пористости кратность, равная отношению объема продукта к объему монолита сухого вещества, применена как универсальный параметр -относительный объем пустот - для различных продуктов. Так, в частности, физическая плотность для тыквы:
р = (1136 + 412- с - 0,464- /-с)/в(с), в(с) = 0,0095 - (1520 - 522(1 - с)) - с ,
где в - текущая кратность, с - концентрация, кг/кг.
Теплофизические характеристики растворов изучались экспериментально-аналитическим экспресс-методом, основанным на тепловой инерции термопары. Получены зависимости коэффициента теплопроводности и температуропроводности X, а от концентрации сухих веществ и температуры продукта. Например, для тыквы:
а(с, Т) = (7,02 - (1 - с) + 0,028 - Т - 0,964) - 3,77 -10-8 /(3 - в(с));
1(с, Т) = (0,411 - (1 - с)2 + 0,0565 - (1- с) + 0,0021 - Т) - 0,5289.
Анализ спектральных терморадиационных и оптических характеристик продуктов с различной влажностью позволил выбрать рациональный вид и накал ИК-излучателей типа КГТ-220-1000 при варьируемом напряжении и оптически тонкий (1 < 0,002 м) слой.
С целью оценки эффективности ИК-излучателей и решения дифференциального уравнения переноса тепла очевидна необходимость точного количественного определения функции ю = /(х,Ш, Т). На основе дифференциально-разностного метода расчета смоделировано и с использованием экспериментально определенных значений плотности падающего интегрального потока Ер рассчитано уточненное распределение величины ш по слою.
Вычислялись оптические интегральные характеристики: Ь - коэффициент эффективного ослабления, характеризующий ослабление потока по мере его распространения в оптически бесконечно толстом слое и численно равный обратной величине глубины слоя, при прохождении которой результирующий поток излучения уменьшается в е раз, Я¥ - отражательная способность оптически полубесконечного слоя. Необходимо учитывать внешнее и внутреннее отражение от границ слоя.
Так как облучение происходит интегральным потоком при селективных оптических свойствах, значительно рассеивающих ИК-излучение материалов, происходит изменение спектрального состава Ер падающего потока по мере проникновения в глубь слоя.
Ниже приводится точное решение для функции внутренних источников тепла (распределения объемной плотности поглощенной энергии) для двухстороннего облучения слоя:
і \ і \ 1 - кЛж)
^{х,Ж )= ь(х,Ж )ЕГ
1 - у2 (Ж, х)
ехр(- 1(ж,х)х)- ^(^(^Х)) ехр(!(Г,х)х)
+1(1 - х,Ж )Ер 2 1 К ”(Г)
1 - ^2 (Ж, I - х)
ехр(- Ь(ж,/- х)(I- х))- ^ (1лх) ехР(£(Ж,I- х)( 1 - х))
К„(Ж)
К (ж)-К
где кэ (ж)=К (Ж- К (Жк );¥К “(Ж)ехр(- і(Ж,х)/) ’1 - толщина
слоя, м; Я„ - интегральная отражательная способность подложки; Ер - плотность падающего потока, Вт/м2, Ер1 - плотность падающего с одной стороны потока, Вт/м2 , Ер2 - плотность падающего потока с другой стороны, Вт/м2.
Для тыквы:
при напряжении на лампах (в качестве примера) и = 140 В, 1тах = = 1,45 мкм:
^- 6 - 5,53125 • 10- 41 -I - 4,8325 • 10- 3 -Ж + 0,480225 ;
К(і,Ж )= ^5,3125-10 6 -Ж-Т(/, Ж) = ^- 5,04875 • 10- 5 - Ж + 6,504874 • 10- 3^ • I - 2,2555 • 10- 4 -Ж + 0,025455 ;
Ь(х, с)= (- 71,668 • с + 57,7090) • ^х • 103 ^ + (503,125 • с - 398,563) • ^х • 103 ^ +
+ (-1275,2075 • с +1039,47875) • ^х • 103 ^ + (1374,6875 • с -1237,46875) • ^х • 103 ^ +
+ (451,25- с +1943,875); при и = 170 В, 1тах= 1,34 мкм:
К(ї, Ж) = ^1,25 • 10- 5 -Ж -1,125 • 10- 31 • I - 4,835 • 10- 3 • Ж + 0,48215;
Т(/, Ж) = ^- 5,839375 • 10- 5 - Ж + 7,583938 • 10- 3 • I - 2,08925 • 10- 4 - Ж + 0,023489 :
+
+ (-1418,28125 • с +1157,82813) • ^ х 103 ^2 + (1506,14583 • с -1359,61458)-^ х 103 ^ +
+ (393,75 • с +19913,625)
Таким образом, получим математическую модель распределения объемной плотности поглощенной энергии в слое.
Проведены исследования влияния основных факторов на эффективность сушки при комбинированном энергоподводе. В качестве целевой функции выбран съем сухого продукта с единицы площади (объема) рабочей поверхности в единицу времени У, кг/(м •ч).
а Ж, кг/кг. б
Кривые скорости сушки:
а - пивной барды для Т = 373 К: 1-Хк = 0,0005 м; 2-Хк = 0,001 м; 3-Хк = 0,002 м;
4-Хк=0,003 м; б - тыквы при и = 140 В; Ж = 76 %; d = 0,004 м; ю = 12 000 об/мин; 1-Ер = 1,14 кВт/м2; 2-Ер= 1,6872 кВт/м2; 3-Ер = 2,052 кВт/м2
Установлено, что к основным факторам, влияющим на интенсивность процесса сушки, относятся: исходная концентрация сухих веществ С (кг/кг), диаметр гранул d (м), плотность теплового потока Е (кВт/м2), длина волны 1шах (мкм), соответствующая максимальной интенсивности излучения, температура греющей поверхности начальная * (К), а также температура Т или *с (К) и скорость сушильного агента (м/с) при конвективной сушке. Границы варьирования факторов выбраны исходя из технологических ограничений и возможностей технического осуществления процесса сушки. Диапазоны варьируемых факторов: С = 0,1-0,6 %, Сдоб = =0-0,25 кг/кг, Е = 1-11 кВт/м2, и = 80-220 В, * = 313-473 К, ^ = = 293-353 К, *с = 333-443 К, d = 0,004-0,01 м. Рекомендованы рациональные режимы обезвоживания и гранулирования. Радиационная сушка (светлые ИК-генераторы КГТ-220-1000). Корма для непродуктивных жи-
вотных (цилиндрические гранулы, атмосферная сушка): Е = 5,7 кВт/м2, d = = 0,008 м, Лmax = 1,16 мкм, Y = 5,3 кг/(м2час). Конвективная сушка. Пивная дробина: Т = 443 К, h = 0,0005 м, Y = 23,5 кг/(м2час).
Получены адекватные аппроксимирующие уравнения. Например: Радиационная сушка (светлые ИК-генераторы КГТ-220-1000, атмосферное давление). Корма для непродуктивных животных (цилиндрические гранулы). Границы варьирования факторов: Ер = 2,1 - 5,7 кВт/м2, d = = 0,004 - 0,01м, Л max = 1 - 1,6 мкм.
Y = (al • E + a2) • d + a3 • E + a4;
a. = 3,626 • 104 • ^ma* - 8,146 • 104 •Л max + 4,52 • 104,
где
a2 = 5,042 • 104 • ^max -1,312 • 105 • Лmax + 8,478 • 104 a = -2,198 • 104 • +
+ 5,246 • 104 • Лmax - 3,048 • 104; a4 = -160,023 • + 420,174 • 104 • Лmax - 280,856.
Конвективная сушка. Пивная дробина:
Y = I 261,8685 • T - 90,55628-106 ]• h 2 + (- 884,2 • T + 3,0439 l05 !• h +
+ 0,8425Т - 283,4365.
Для математического описания кривых скорости влагоудаления разработан многозонный метод. Ниже приведены (в качестве примера) зависимости для тыквы: при числе оборотов измельчителя ю = 12 000 об/мин, d = 0,004 м, Ер = 0,912 - 3 кВт/м2. Концентрации границы 1, 2, 3, 4 зон: С1к = 0,3; С2к = 0,46; С3к = 0,76; С4к = 0,9, и полученные уравнения кривых скорости сушки соответственно:
dcdt l(c, Ep ) =
(-2.5151702397022 • Л2 + 6.3168913324056 • Л-3.9396673030142) • Ep2 + ^ + (8.76326366540213 • Л2 - 22.057615626472 • Л +13.771278101 8764^ Ep + + (-6.29803972142633 • Л2 +15.8443871864158• Л- 9.89895670600409)
У
((0.00019135928248 • Л2 - 0.00009452876176• Л- 0.00031235618687)• Ep2 + '
+ (-0.00140848136538 • Л2 + 0.00156648119122 • Л + 0.00071524434343) • Ep + + (
V
-0.0025878810519 • Л2 + 0.00907591540752• Л-0.00776271742929)
У
(5.579157304075 • 10-13 Л2 - 1.394789326019 • 10-12 Л + 8.672242113455 • 10-13 )• Ep +
+ (-1.780847012539 • 10-12 Л2 + 4.452167531348• 10-12 • Л - 2.768179684291 10-12 )• Ep + v +(2.8644945079 •Ю-13 Л2 - 7.5954568305 • 10-13 Л + 76)
-((1 - c)• 100)
4
dc dt 2 (с, Ер ) =
-4
(0.86866624377448619 • Я2 - 2.6300374676271 • 2 + 1.817267374473 58)• Ер2 +
+ (-2.1197847846765 Я + 6.52126045 83663 • 2- 4.3756084548277)• Ер +
+ (0.7241758 5505572 Я2 - 2.2223933628782 Я + 1.303 82534091873)
(0.02075137050853 Я2 + 0.05277596008245 Я- 0.03324204562535 )• Ер 2 +
+ (0.06248018670324 • Я2 - 0.15896244817476 Я + 0.0996486873098 5)• Ер +
+ (-0.04241054055556 • Я2 + 0.10744340815 • Я - 0.06705447029944)
({(768.398284866754 • Я2 - 1919.85392214188 • Я + 1193.95702624338)• Ер2 + А ^ + (-2400.20036140104 Я2 + 6009.70487612705 • Я- 3746.81260768854 )• Ер +
+ (1608.0788432101 Я2 - 4017.443 898283 5 • Я + 2571.1245359118)
-((1 - с) 100)
dc dt 3 (с, Ер ) =
(-2385.8874762314 • Я2 + 5966.0161068673 • Я-3710.3559239811) • Ер 2 + Л + (6732.73422326724 Я2 - 16837.0764338259 Я +10472.718150328) • Ер +
+ (-4574.21568371164 Я2 +11441.1322275563 Я- 7117.80918445284)
'(3.63722700975267 Я2 - 9.09714862993724 • Я + 5.658659175405) • Ер + Л -4 • + (-10.2633238920237 • Я2 + 25.671998567837 • Я-15.9712294703838) • Ер +
+ (6.97089325983977 • Я2 - 17.4387851040439 • Я + 10.8508017020505)
(( (389974.512921419 • Я2 - 975004.356041674 • Я + 606270513807504 )• Ер + 4 Л
+ (-1099548.44622094 • Я2 + 2749226.74279587 • Я -1709676.75363169) • Ер +
+ (746378.113817088• Я2 - 1866465.2858249• Я + 1160953.302922)
■((1 - с) 100)
dcdt 4 (с, Ер ) =
-4 •
(841.0913832158^ Я2 - 2107.9535200812 • Я +1308.1547601065) • Ер2 + ^
+ (-2475.36874549144 • Я2 + 6158.75744446637 • Я - 3785.95671208051) • Ер +
+ (1456.01646166745 Я2 - 3531.9019089613 • Я + 2102.33044793807)
(-1.00547661058864 • Я2 + 2.4956489253605 • Я-1.5305066280101) • Ер +
+ (2.79220769679554 • Я2 - 6.83100465587773 • Я + 4.11115759851009) • Ер +
+ (-1.46524647143853 • Я2 + 3.41543492804077 • Я -1.9257199094596) (-175141.251638414 • Я2 + 440818.725474005 • Я - 274994.835121088) • Ер + ^ ^ + (533646.773291069 • Я2 -1337219.73665232 • Я + 829204.068967381) • Ер +
+ (-334179.950177105 • Я2 + 823004.600028566 • Я - 499254.410635214)
■((1 - с )•100 )
Данные по коэффициенту влагопроводности и термодиффузии являются отрывочными, не учитывающими зависимость от комплекса свойств продуктов, а для большинства продуктов (особенно нетрадиционных) отсутствуют. Данных по коэффициенту молярного переноса пара в литературе практически нет. Это обусловлено отсутствием быстрых методов расчета, что связано со сложностью комплекса явлений при тепломас-
сопереносе в реальных процессах. Разработан и апробирован численноаналитический метод расчета эволюции полей температур и определения коэффициентов потенциалопроводности и молярного переноса пара с учетом динамики обезвоживания на основе аппроксимации кривых кинетики сушки и свойств продуктов. Получены зависимости массовлагообменных характеристик от варьируемых параметров. Рассчитаны частные поля температур при различных способах сушки продуктов. Отмечена малая величина температурного градиента практически по всему слою продуктов со скачком в пограничном слое у греющей поверхности.
Выводы и заключение. Результаты исследований термодинамических закономерностей взаимодействия пищевых продуктов с водой показали, что энтропийная составляющая свободной энергии для ряда растительных продуктов играет значительную роль и свидетельствует о значительной гибкости макромолекул, наличии полупроницаемых мембранных оболочек (клеточных оболочек, стенок мицелл) и ориентационном и осмотическом механизме их взаимодействия с водой.
Величина 5 имеет аномальное отрицательное значение при высоких влажностях, что свидетельствует о перемещении влаги против потока тепла. Это явление говорит в пользу поверхностных или объемных способов энергоподвода. Для интенсификации процесса сушки целесообразно диспергирование продукта (кипящий слой, гранулирование и т. п.), увеличение поверхности влагообмена.
Выявлен и обоснован механизм внутреннего тепломассопереноса на основе феноменологического подхода и кинетики обезвоживания для продуктов растительного происхождения.
На кривых скорости сушки продуктов растительного происхождения наблюдается аномальный рост скорости при низкой влажности или периодические пики с участками постоянной скорости в течение всего процесса, что объясняется повышением интенсивности удаления осмотической влаги и пара внутри ячеек, мицелл, клеток вследствие периодического разрушения полупроницаемых оболочек клеток или мицелл (парниковый эффект) при повышении внутреннего давления и образовании молярных потоков пара, созданием существенных градиентов общего давления и, как следствие, резким снижением энергии связи влаги с материалом, т. к. осмотическая влага является по своим свойствам «свободной» влагой, удерживаемой механически осмотическими силами и стенками полупроницаемых оболочек, при разрушении которых и наблюдается рост и участки постоянной скорости сушки.
Перемещение влаги к поверхности через сеть микрокапилляров или пленочный каркас осуществляется в основном в виде пара, диффундирующего через утоньчающиеся в процессе обезвоживания пленки жидкости или стенки капилляров, при росте градиента давления пара в слое, что приводит к росту скорости диффузии. Диффузия пара происходит в виде последовательных эквимолярных процессов испарения и конденсации пара на жидких менисках, стенках клеток и мицелл при малых градиентах концентрации и температуры, о чем говорит отсутствие при интенсивной
сушке усадки, неизбежной при существенных градиентах влажности. Все это говорит в пользу осциллирующих режимов сушки продуктов, что и реализовано авторами в разработанных способах и сушилках.
Полученные результаты и рекомендации могут быть использованы при создании, рационализации и интенсификации прогрессивных технологических процессов и высокоэффективных промышленных установок.
СПИСОК ЛИТЕРАТУРЫ
1. Лухт Х.В. Снижение питательных веществ в соевых бобах с помощью экспандера // Комбикорма. - 2000. - № 4.- С. 32-34.
2. Бойко Л. и др. Особенности процесса экспандирования // Комбикорма. - 2002. -№ 5. - С. 21-22.
3. Алексанян И.Ю. и др. Новые технологии сухих продуктов животного и растительного происхождения // Изв. вузов. Пищевая технология. - 1998. - № 2. -С. 38-40.