Научная статья на тему 'Исследование моделей дискретных каналов с памятью в рамках лабораторного практикума,построенного на базе пакета MatLab'

Исследование моделей дискретных каналов с памятью в рамках лабораторного практикума,построенного на базе пакета MatLab Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
580
82
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МОДЕЛЬ КАНАЛА С ПАМЯТЬЮ / МОДЕЛЬ ОШИБОК / ВЕРОЯТНОСТЬ ОШИБКИ / ПАКЕТ МОДЕЛИРОВАНИЯ

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Фрейман Владимир Исаакович, Пирожков Александр Петрович

Для проектирования систем передачи информации с заданными характеристиками качества необходимо построить, а затем и использовать в расчетах адекватную модель ошибок в канале связи. Исследования реальных современных каналов связи (например, в составе локальных вычислительных сетей, систем IP-телефонии, мультисервисных телекоммуникационных сетей) показали, что часто канал связи наиболее точно описывается моделью с памятью. Такая модель подразумевает нахождение канала в одном из устойчивых состояний: «хорошее» состояние (ошибки отсутствуют либо вероятность их появления незначительна, и они имеют случайный и независимый характер) и «плохое» состояние (вероятность ошибок большая, и группирование ошибок описывается понятием «пакет ошибок»). Анализу некоторых моделей каналов связи с памятью посвящена настоящая статья.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Исследование моделей дискретных каналов с памятью в рамках лабораторного практикума,построенного на базе пакета MatLab»

2013 Электротехника, информационные технологии, системы управления № 7 УДК 621.396

В.И. Фрейман, А.П. Пирожков

Пермский национальный исследовательский политехнический университет,

Пермь, Россия

ИССЛЕДОВАНИЕ МОДЕЛЕЙ ДИСКРЕТНЫХ КАНАЛОВ С ПАМЯТЬЮ В РАМКАХ ЛАБОРАТОРНОГО ПРАКТИКУМА, ПОСТРОЕННОГО НА БАЗЕ ПАКЕТА MATLAB

Для проектирования систем передачи информации с заданными характеристиками качества необходимо построить, а затем и использовать в расчетах адекватную модель ошибок в канале связи. Исследования реальных современных каналов связи (например, в составе локальных вычислительных сетей, систем IP-телефонии, мультисервисных телекоммуникационных сетей) показали, что часто канал связи наиболее точно описывается моделью с памятью. Такая модель подразумевает нахождение канала в одном из устойчивых состояний: «хорошее» состояние (ошибки отсутствуют либо вероятность их появления незначительна, и они имеют случайный и независимый характер) и «плохое» состояние (вероятность ошибок большая, и группирование ошибок описывается понятием «пакет ошибок»). Анализу некоторых моделей каналов связи с памятью посвящена настоящая статья.

Ключевые слова: модель канала с памятью, модель ошибок, вероятность ошибки, пакет моделирования.

V.I. Freyman, A.P. Pirozhkov

Perm National Research Polytechnic University, Perm, Russian Federation THE RESEARCH OF DISCRETE CHANNEL MODELS WITH MEMORY WITHIN LABORATORY PRACTICAL WORK USING THE MATLAB PACKET

To design data transmission systems with the given quality characteristics it is necessary to construct and subsequently use in calculation an adequate error model in the communication channel. The investigation of real current communication channels (for example, as part of the local computer networks, IP-telephony systems, multiservice telecommunication networks) has shown that communication channels are most precisely defined by a model with memory. The above model implies that a channel can be found in one of two steady states, that is a «good» state (the errors are missing or their emergence probability is insignificant and the errors are of random and independent nature) and a «bad» state (error probability is great and error grouping is described by the notion «error packet»).This paper deals with the analysis of some communication channel models with memory.

Keywords: channel model with memory, error model, error probability, simulation packet.

На этапе проектирования системы передачи информации выбор и расчет модели ошибок в канале связи существенным образом влияют на обеспечиваемые системой показатели качества, достоверности и надежности. Для построения адекватной модели необходимо провести детальное тестирование канала связи, получить и обработать статистику ошибок, а затем определить (выбрать) тип и основные параметры модели.

Вопросы построения и анализа моделей подробно рассмотрены в соответствующих монографиях, а также в доступной студентам учебно-методической литературе [1]. Однако для лучшего понимания необходимо дополнить теоретический курс циклом практических и лабораторных работ, направленных на самостоятельное выполнение расчетных и исследовательских заданий по построению и исследованию моделей дискретных каналов с памятью. Это также важно, поскольку большое количество современных каналов связи описывается именно моделями указанного класса.

В данной работе рассматриваются модели дискретных каналов связи с памятью (Гильберта и Гильберта-Эллиота), а также реализация лабораторного практикума по их исследованию, выполненного с использованием пакета моделирования MatLab [2].

Дискретный канал с памятью, описываемый моделями Гильберта и Гильберта-Эллиота

Введем ряд понятий (сущностей), определений и обозначений [1].

Множество состояний канала с памятью (КСП) характеризует конечное множество состояний, в которых может находиться КСП. Обозначим через R мощность этого множества. Например, R = 2 означает, что КСП может находиться в двух состояниях: G («good - хорошее») и В («bad - плохое»)}. Если параметр R = 3, то КСП может находиться в трех состояниях: {G, GB, В} и т.д. В общем случае обозначим состояния КСП через переменную С, которая может принимать R значений.

Введем понятие память канала глубины l, которое означает, что существует статистическая связь между текущим состоянием канала С0 и l предшествующими состояниями канала.

Прежде чем описать модель Гильберта, введем понятие, характерное для симметричных двоичных дискретных каналов с памятью, -пакет ошибок длины b. Это вектор ошибок длины b, первая и последняя компоненты которого всегда равны единице. Число единиц и нулей внутри пакета распределяется произвольно, но при этом число

подряд идущих нулей должно быть меньше некоторого числа Ь3, называемого защитным интервалом. Таким образом, защитный интервал определяет условия начала и окончания пакета ошибок. Пример. Пусть дан некоторый поток ошибок: .... 00001001011010 001001 0001000101000....

Ь = 9 Ь = 4 Ь = 1 Ь = 3 Пусть Ьз = 3, тогда в данном потоке ошибок можно выделить 4 пакета с длинами соответственно 9, 4, 1 и 3.

Модель Гильберта - это трехпараметрическая модель, описывающая ДСДКП (дискретный симметричный двоичный канал с памятью) с глубиной памяти l = 1. В основе модели - элементарная цепь Маркова, выделяющая два состояния канала ^ = 2): «хорошее состояние» (о), в котором ошибки не возникают, и «плохое состояние» (В), в котором вероятность ошибки в одном разряде составляет ре. Граф марковской цепи показан на рис. 1.

Рис. 1. Граф переходов состояний ДСДКП, описываемого моделью Гильберта

Матрица памяти (Мп) канала, которая в общем случае имеет размерность R х R, и матрица ошибок (Мс), которая имеет место только в состоянии B, для рассматриваемой модели имеют следующий вид:

Mо =

0

1 - ре ре

1

ре

1 - р е

о

B

о в

Роо Ров Рво Рвв

Размерность модели для Мп определяется как N = 2 (нужно вычислить по одной вероятности в каждой строке), а для Мо - N = 1 (нужно вычислить только вероятность ошибки ре). Поэтому размерность модели Гильберта ^ = ^ + N = 2 + 1 = 3, т.е. модель Гильберта полностью описывается тремя параметрами: ре, ров, рво, которые должны

ми=

быть определены экспериментально. Имея указанные параметры, можно аналитически вычислить вероятностные показатели, характеризующие условия передачи информации по ДСДКП с глубиной памяти I = 1.

Определим вероятности пребывания канала в состояниях G и В как финальные вероятности марковской цепи:

Если роо ИЛИ рвв близки к 1, то наблюдается тенденция к сохранению возникшего состояния G или В, что и моделирует канал с пакетными (коррелированными) ошибками. В состоянии В возникает пакет ошибок.

Для вычисления вероятности возникновения ошибок определенной кратности в большинстве моделей с памятью, используемых на практике и описываемых простыми цепями Маркова, принимают следующее допущение. Считается, что в различных состояниях памяти канала имеет место биномиальное распределение ошибок с соответствующей вероятностью ошибки. Тогда с учетом изложенного определим вероятность ошибки на символ в канале, описываемом моделью Гильберта:

Вероятность ошибки кратности 1 среди п символов, передаваемых по каналу с памятью, определяется как

р(о) = рва / (ров + Рво), р(В) = ров / (ров + Рво).

(1)

Рош ~ ре • р(в) = ре • ров / (ров + Рво).

(2)

(А ■

Р(1, П) = . ро ш(1 - рош) ^ . 11)

(3)

(4)

ров

G

В

рво

Рис. 2. Граф переходов и состояний ДСДКП модели Гильберта-Эллиота

Модель Гильберта-Эллиота - это четырехпараметрическая модель ДСДКП с глубиной памяти I = 1 и числом состояний канала R = 2. В отличие от предыдущей модели в данной модели допускается появление ошибок как в «хорошем» (о), так и в «плохом» (В) состоянии канала соответственно с вероятностями ре0 и рЕ1. Граф марковской цепи для модели Гильберта-Эллиота показан на рис. 2.

Матрица памяти данной модели аналогична предыдущей. Матрицы ошибок строятся и для состояния о, и для состояния В:

0 1 0 1

G_

1 - Pe1 Pel

MG = о 1

i - ре ре ре 1 - ре

M B = 0 1

Pe1 1 - Pe1

Для Мп размерность модели Nn = 2 (нужно вычислить по одной вероятности в каждой строке), а для двух Мо No = 2 (нужно вычислить только вероятности ошибки в каждом состоянии: ре0 и ре1). Поэтому размерность модели Гильберта-Эллиота ^ = Nn + No = = 2 + 2 = 4, т.е. модель Гильберта полностью описывается четырьмя параметрами: pe0, pe1, Pbg, Pgb, которые должны быть определены экспериментально. Имея указанные параметры, можно аналитически вычислить вероятностные показатели, характеризующие условия передачи информации по ДСДКП с глубиной памяти l = 1.

Вероятности p(G) и p(B) определяются по (1).

Вероятность ошибки на символ:

Рош = Pe0PG + Pe, Рв = Pe0PbG + ^GB . (5)

PGB + PBG

Вероятности p(i, n) и р (>1, n) приближенно оцениваются выражениями, аналогичными (3) и (4), с учетом подстановки (5).

В заключение отметим, что, как показали экспериментальные исследования, большинство современных каналов связи достаточно корректно описывается моделями ДСДКП.

Разработка методического и программного обеспечения лабораторного практикума

В качестве среды для моделирования алгоритмов исследования по моделям Гильберта и Гильберта-Эллиота был выбран пакет MatLab как среда, широко используемая при обучении в области науки и техники [3]. Она позволяет без дополнительной графической нагрузки на студента в понятном и доступном виде представить результаты вычисления для дискретного канала с заданными характеристиками [2].

Программа дает возможность наглядно увидеть результаты вычисления параметров модели для заданной последовательности: матрица памяти, матрицы ошибок, длина последовательности, количество ошибок, вероятность ошибок, вероятности пребывания в состоянии B, G и др. Данная программа проводит анализ по уже заданной в ней последовательности, которая может быть легко отредактирована перед запуском. Программное обеспечение лабораторного практикума представляет собой m-файл, написанный на языке m.script, разработанном в пакете MatLab. В нем имеется возможность вручную ввести некоторую последовательность потока ошибок, а также выбрать режим генерирования случайной последовательности с заданными свойствами. Как задать ручной режим моделирования, конкретное значение последовательности, параметры и тип исследуемой модели, показано на рис. 3.

о ii ■ 11 % а ^ | a -j - I д » »I в • -I a 'it i а д BjSc . |

3 - dl=3; ' ' •': ВВЕДИТЕ ЗН&ЧЕЯИЕ ЗАЩИТНОГО ИНТЕРБЙЛЙ.

4 - dlZ-2; ВВЕДИТЕ ЗНАЧЕНИЕ ИНТЕРЕАЛА ВХОЖДЕНИЯ В ПЛОХОЕ СОСТОЯНИЕ

21 — ge=0.1 ^коэффициент для расссчета вероятности при

22 ^количестве пакетов и ик длины при пакетирующимся ошибках

26 %а='0011110100101001010001011100001010001001111111100111100001110001;

Рис. 3. Окно выбора режима работы и вида модели

Далее укажем возможные варианты исследования. Зависимость вероятностных характеристик модели от длины защитного интервала.

Будем рассматривать зависимость параметров модели при изменении длины защитного интервала (рис. 4, а, б, в).

Рис. 4. Вывод данных при защитном интервале длины 1, 2 и 3

б

а

в

Занесем полученные результаты в таблицу. Из анализа таблицы можно сделать выводы о характере зависимости вероятностных характеристик модели от длины защитного интервала.

Зависимость вероятностных характеристик модели от длины защитного интервала

Ьз(о) Ьз(в) NШк Р(о) р(в) рош

1 1 9 0,4706 0,5294 0,5294

2 1 6 0,4545 0,5455 0,4286

3 1 4 0,4286 0,5714 0,3492

4 1 1 0 1 0,4074

Установим зависимость между вероятностью ошибок и длиной интервала в зависимости от длины исследуемого пакета. Для этого проведем еще несколько опытов с одинаковыми последовательностями, меняя длину защитного интервала. Получим график зависимости (рис. 5).

рош 0,6

0,2 од -о

о

рош 0,6 -,—

0,5--

0,4--

0,3--

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0,2 - — 0,1 О--

0 1 2 3 4 5

Ьцв)

б

Рис. 5. График зависимости Ьз от рош при

разных длинах пакетов для моделей Гильберта (а) и Гильберта-Эллиота (б)

Как видно, при увеличении Ьз, рош увеличивается. При маленьких I возможны отклонения от нормы, т.е. для более актуальных данных I должно быть относительно большим.

Задание 1: провести анализ заданной вариантом последовательности для различных Ьз, на основе моделей Гильберта и Гильберта-Эллиота, результаты записать в таблицу, как в примере, проанализировать ее. Последовательность взять из файла var.m, один раз запустив данный скрипт и подставив значение в переменную «а».

Сравнительный анализ моделей Гильберта и Гильберта-Эллиота.

Возьмем некоторую последовательность и используем ее для анализа двух моделей. Для модели Гильберта возьмем параметр Ьз(С) = 3 (переменная dl в программе), а для модели Гильберта-Эллиота - Ьз(В) (переменная dl2) как параметр входа в «плохое» состояние (рис. 6).

Рис. 6. Вывод данных по моделям Гильберта и Гильберта-Эллиота

Задание 2: провести анализ последовательности по модели Гильберта и Гильберта-Эллиота. Результаты занести в таблицу, как в примере, используя параметры Ьз(С) = 3, Ьз(В) = 3.

Лабораторный практикум, который разработан на основе указанного программного обеспечения, будет идти в комплексе с практическими занятиями по теме «Исследование двоичных каналов с памятью». Для расчета студент получает индивидуальный вариант задания в виде последовательности ошибок. В результате работы ему необходимо выбрать и рассчитать параметры модели, доказав ее адекватность, и предоставить результаты преподавателю. При успешном выполнении данного задания студент допускается к лабораторной работе, в ходе которой анализируются рассчитанные данные, а также проводятся исследование и сравнение параметров моделей с памятью на наборах случайных последовательностей с заданными свойствами.

В процессе лабораторного практикума студент получает навыки как расчета модели канала с памятью, вручную рассчитав необходимые параметры самостоятельно на примере заданной преподавателем последовательности, так и анализа модели канала связи на основании случайно сгенерированных последовательностей. Информация представляется в текстовом, табличном и графическом виде, что позволит улучшить восприятие и понимание студентами рассматриваемых сложных теоретических и практических вопросов.

Библиографический список

1. Кон Е.Л., Фрейман В.И. Теория электрической связи. Помехоустойчивая передача данных в информационно-управляющих системах: модели, алгоритмы, структуры. - Пермь: Изд-во Перм. гос. техн. ун-та, 2007. - 317 с.

2. Васильев В.В., Симак Л.А., Рыбникова А.М. Математическое и компьютерное моделирование процессов и систем в среде MatLab/Simulink / НАН Украины. - Киев, 2008. - 91 с.

3. Пирожков А.П., Фрейман В.И. Исследование каналов с памятью, описываемых моделью Гильберта, с использованием среды моделирования MatLab // Инновационные технологии: теория, инструменты, практика (Innotech 2012): материалы IV Междунар. интернет-конф. молодых ученых, аспирантов, студентов (1 ноября 2012 г. - 31 декабря 2012 г.). -Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2012 - С. 318-323.

Сведения об авторах

Фрейман Владимир Исаакович (Пермь, Россия) - кандидат технических наук, доцент, заместитель заведующего кафедрой автоматики и телемеханики Пермского национального исследовательского политехнического университета (614990, Пермь, Комсомольский пр., 29, e-mail: [email protected]).

Пирожков Александр Петрович (Пермь, Россия) - магистрант кафедры автоматики и телемеханики Пермского национального исследовательского политехнического университета (614990, Пермь, Комсомольский пр., 29, e-mail: [email protected]).

About the authors

Freyman Vladimir Isaakovich (Perm, Russian Federation), PhD, senior lecturer, deputy head of the automatics and telemecanics department of Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: [email protected]).

Pirozhkov Alexander Petrovich (Perm, Russian Federation), master's degree student at the department of the automatics and telemecanics of Perm National Research Polytechnic University (614990, Perm, 29, Komsomolsky pr., e-mail: [email protected]).

Получено 05.09.2013

i Надоели баннеры? Вы всегда можете отключить рекламу.