УДК 621.039:3;621.039.54-73
ИССЛЕДОВАНИЕ ИЗОТОПНОГО СОСТАВА ПРОДУКТОВ ПЛАЗМОХИМИЧЕСКОЙ КОНВЕРСИИ ГЕКСАФТОРИДА СЕРЫ
Р.В. Сазонов, А.И. Пушкарёв,С.А. Сосновский
Томский политехнический университет E-mail: [email protected]
Представлены результаты исследования разложения гексафторида серы в смеси с водородом и кислородом в плазме импульсного электронного пучка, формируемого ускорителем ТЭУ-500 (350. ..500 кВ, 60 не, плотность тока до 0,4 кА/см2). Приведены данные термодинамического моделирования конверсии смеси газов SF6+02 и SF6 +Н2 +02 в низкотемпературной плазме, и состав смеси газов после воздействия электронного пучка, измеренный масс-спектрометром. Показано, что основное газофазное соединение, синтезируемое в плазме импульсного электронного пучка - дифторид-оксид серы. Выполнен изотопный анализ ионов (SOF)+ и (SOF2)+. Получено, что содержание изотопа серы 34S в дифторид-оксиде серы превышает его содержание в исходном гексафториде серы в 1,8±0,1 раза.
Введение
В последние годы возрос интерес к химическим и физическим свойствам стабильных изотопов веществ. Для их получения используются различные процессы. Основной метод разделения (с помощью центрифуг) дорог и требует длительное время для получения большой степени обогащения. Поэтому актуальна разработка новых методов получения изотопов. В работе [1] экспериментально обнаружено более чем 30-кратное обогащение изотопом 'ЧЧ атомов азота в послеразрадной зоне импульсного разряда в потоке азота. Для объяснения этого эффекта предложена модель двухстадийного обогащения изотопом 15К высоких колебательных уровней электронно-возбужденного состояния N2 с последующей диссоциацией этого состояния.
Фторидные соединения широко используются в технологических переделах получения редкоземельных металлов, изотопного разделения [2]. Процесс восстановления металла из фторидного соединения осуществляется при нагревании смеси фторида с водородом и является самым энергозатратным этапом получения чистого металла. Процесс водородного восстановления фторидных соединений эффективно протекает и в плазмохимических процессах, позволяющих значительно снизить затраты энергии за счет отсутствия нагрева реактора и газофазной смеси до высокой температуры. Кроме того, условия, реализуемые при импульсном возбуждении газовых смесей электронным пучком, благоприятны для организации цепных химических процессов. В этих условиях на получение требуемых продуктов расходуется энергия не только источника возбуждения, но и химическая энергия исходной реагентной смеси [3, 4]. Эффективное возбуждение колебательных уровней молекул происходит и в плазме импульсного электронного пучка, поэтому при конверсии фторидных соединений возможно проявление изотопического эффекта.
Целью представленной работы является исследование изотопного состава продуктов конверсии
фторидных соединений в плазме импульсного электронного пучка. В качестве исходного соединения выбран гексафторид серы. Природная сера состоит из четырех изотопов: 32S (95,1 %), 33S (0,74 %), 34S (4,16 %) и 36S. Большая концентрация 34S позволяет проследить изменение изотопного состава при конверсии серосодержащих соединений с помощью универсального масс-спектрометра, имеющего низкое разрешение по массам.
1. Экспериментальная установка
Экспериментальные исследования по разложению гексафторида серы были выполнены на специализированном импульсном электронном ускорителе ТЭУ-500 [5]. Кинетическая энергия электронов составляла 350...500 кэВ, полная энергия электронов за один импульс в данных экспериментах равнялась 90 Дж. Длительность импульса на по-лувысоте равнялась 60 не, диаметр пучка - 5 см, плотность электронного тока на входе реактора не превышала 0,4 кА/см2. Электронный пучок инжектировался в замкнутый реактор через анодную фольгу (А1, 130 мкм) с торца. Реактор - цилиндр из нержавеющей стали с внутренним диаметром 14 см и объемом 3 л. Состав исходной смеси газов в реакторе и после воздействия импульсного электронного пучка измеряли масс-спектрометром МХ-7403. Выходной сигнал масс-спектрометра передавался на компьютер через АЦП «Лан-7» с гальванической развязкой. Изменение содержания компонент газовой смеси оценивали по изменению площади соответствующего пика масс-спектра.
Для определения изотопного состава исходной смеси и продуктов обработки использовали газовый хроматограф-масс-спектрометр TRACE DSQ. Он предназначен для исследования молекулярного состава сложных органических и неорганических соединений, имеющих температуру кипения ниже 500 °С. Отличительной особенностью прибора является высокая чувствительность, позволяющая определять вещества с содержанием от 1 мкг/л в диапазоне 1-1050 а.е.м.
2. Термодинамическое моделирование конверсии
гексафторида серы
Для контроля изменения изотопного состава при конверсии 8Б6 необходимо получить газофазные продукты, которые можно анализировать масс-спектрометром. Перед проведением экспериментов было выполнено термодинамическое моделирование с целью определения оптимального состава начальной смеси газов, позволяющей синтезировать в заметных количествах газофазные серосодержащие соединения. Наиболее подходящие продукты конверсии 8Б6 - диоксид серы и дифторид-оксид серы. Они находятся в газовой фазе при комнатной температуре, имеют низкую реакционную способность, линии их масс-спектра не перекрываются с линиями масс-спектра гексафторида серы.
Расчет низкотемпературной плазмы был проведен на компьютере с использованием автоматизированной системы термодинамических расчетов «ТЕЯЯА» [6]. Расчеты выполнялись для интервала температур 300...5000 К и давления исходной смеси 0,1 МПа. Конечным результатом расчетов были значения равновесных мольных концентраций химических соединений (в моль на кг исходной смеси газов), образование которых в данных условиях термодинамически возможно. На их основе построены графики зависимостей мольных концентраций образующихся химических соединений исследуемой системы от температуры.
Результаты расчетов конверсии гексафторида серы в смеси с кислородом приведены на рис. 1. Показано, что при термическом разложении смеси 8Р6+02 при изменении концентрации кислорода в смеси от 2 до 10 % диоксид серы не образуется.
С, моль/кг
Рис. 2. Зависимость мольных концентраций образующихся веществ в низкотемпературной плазме гексафторида серы в смеси с кислородом и водородом. Исходная смесь (в кПа): 50 БРь+40 Н2+Ю 02
Термодинамические расчеты показали, что при низкой концентрации кислорода в исходной смеси основные продукты разложения гексафторида серы - фтористый водород и дифторид-оксид серы. Диоксид серы формируется при температуре ниже 3500 К и при температуре ниже 2800 К превращается в дифторид-оксид серы. Фтористый водород имеет высокую реакционную способность и реагирует с материалом плазмохимического реактора, поэтому в продуктах конверсии мы его не обнаружили. При содержании кислорода в исходной смеси более 30 об. % основной продукт конверсии гексафторида серы - дифторид-диоксид серы.
3. Исследование состава продуктов
конверсии $Рб в плазме электронного пучка
На рис. 3 показан обзорный спектр продуктов конверсии 8Р6+Н2+02 в плазме импульсного электронного пучка (после 150 импульсов). Приведены данные двух замеров газовой смеси в реакторе. Состав смеси газов в реакторе измеряли масс-спектрометром МХ-7403.
Рис. 1. Зависимость мольных концентраций образующихся веществ в низкотемпературной плазме 5/г6 и 02. Исходная смесь (в кПа): 90 5Е6+Ю 02
Выполненные расчеты показали, что дифторид-оксид серы является основным продуктом конверсии гексафторида серы в смеси с кислородом и водородом при содержании кислорода менее 30 об. %. Часть расчётов представлена на рис. 2.
100 и
80-
60-
40-
20-
I, отн. ед.
127
40
18
28
67
86
108
О 20 40 60 80 100 120 ш/г
Рис. 3. Обзорный масс-спектр продуктов разложения смеси 5Е,+Н2+07
Исходная смесь газов (в ммоль): 628Р6+62Н2+10Аг+202. Аргон (шД= 40) был введен для нормирования регистрируемых масс-спектро-грамм. Основные линии, характерные для смеси газов в реакторе после воздействия электронного пучка, соответствуют т/%=2, 67, 86 и 127. На рис. 4 показано изменение интенсивности линий с увеличением поглощенной дозы импульсного электронного пучка.
Рис. 4. Зависимость интенсивности линий от числа импульсов электронного пучка: 1) гексафторид серы (m/z=127), 2, 3) дифторид-оксид серы (m/z=86 и 67), 4) Н2+ (m/z=2)
На рис. 5 приведены эталонные масс-спектры SF6 и SOF2 (электронная библиотека NIST).
Рис. 5. Эталонные масс-спектры: а) гексафторида серы и б) дифторид-оксида серы
Выполненные исследования показали, что дифторид-оксид серы является основным газофазным соединением серы, синтезируемым при конверсии гексафторида серы (в смеси с кислородом и водородом) в низкотемпературной плазме.
4. Измерение изотопного состава
газофазных соединений
Разрешающей способности МХ-7403 было недостаточно для анализа изотопного состава серосодержащих соединений, поэтому дальнейшие масс-спектрометрические измерения гексафторида серы и продуктов его конверсии проводили с помощью хроматографа-масс-спектрометра TRACE DSQ.
Для определения точности измерения изотопного состава газофазных соединений с помощью TRACE DSQ был выполнен анализ масс-спектра исходного гексафторида серы (рис. 6).
/, отн. ед.
89 127
, 70 91 108, 129 •
72 1. 110 _Х •
70 80 90 100 110 120 m/z
/, отн. ед.
67 6 ■ !6 р
69 88 ,т
60 65 70 75 80 85 т/г
Рис. 6. Масс-спектр: а) исходного гексафторида серы и б) дифторид-оксида серы, синтезированного в плазме импульсного электронного пучка
Хроматограмма продуктов конверсии гексафторида серы в смеси с кислородом и водородом содержала два пика. На рис. 6 представлены также линии масс-спектра синтезированного дифторид-оксида серы. Степень конверсии 8Р6 не превышала в данной серии экспериментов нескольких процентов. В таблице представлены интенсивности
Заключение
Показано, что при конверсии гексафторида серы в плазме импульсного электронного пучка реализуется изотопический эффект. Содержание 348 в продуктах реакции превышает исходное значение в 1,8 раза, что значительно выше погрешности измерения. Термодинамическое моделирование конверсии гексафторида серы удовлетворительно описывает состав конечных продуктов разложения 8Б6 в плазме импульсного электронного пучка.
Авторы выражают благодарность сотрудникам НАЦ ТПУза помощь в измерении и анализе масс-спектров исследованных соединений.
Работа выполнена при поддержке РФФИ, грант 06-08-00147.
математическое моделирование восстановления фторидных соединений импульсным электронным пучком // Известия Томского политехнического университета. - 2004. - Т. 307. -№ 5. - С. 89-93.
5. Ремнев Г.Е., Фурман Э.Г., Пушкарев А.И., Карпузов С.Б., Кондратьев Н.А., Гончаров Д.В. Импульсный сильноточный ускоритель с согласующим трансформатором // Приборы и техника эксперимента. - 2004. - № 3. - С. 130-134.
6. Трусов Б.Г. Программный комплекс ТЕЯ]1А для расчёта плазмохимических процессов // Матер. 3 Междунар. симп. по теоретической и прикладной плазмохимии. - Плес, 2002. -С. 217-218.
Поступила 07.12.2006 г.
УДК 621.039.337
СЕЛЕКЦИЯ ИЗОТОПОВ МАГНИЯ ПРИ ПЕРЕКРИСТАЛЛИЗАЦИИ MgCI2-6H20
О.С. Андриенко*, Н.Б. Егоров, И.И. Жерин, Д.В. Индык, Е.А. Цепенко, A.C. Дьяченко
*Институт оптики атмосферы СО РАН Томский политехнический университет E-mail: [email protected]
Исследовано изменение изотопного состава Mg при зонной перекристаллизации МдС12-6Н20. Показано, что обогащение по легкому изотопу24 Мд происходит на том конце кристалла, к которому двигается зона перекристаллизации. Изотопы25 Mg,26 Mg концентрируются в начальной зоне кристаллизации. При воздействии на зону расплава постоянного магнитного поля или постоянного электрического тока коэффициент разделения увеличивается. Проведено сравнение полученных данных сданными по разделению изотопов магния другими физико-химическими методами.
Введение
Зонная перекристаллизация, часто называемая зонной плавкой, применяется для глубокой очистки веществ и получения их в монокристаллическом виде. Так как зонной перекристаллизацией можно разделять вещества с очень близкими свойствами, а изотопы с низким содержанием можно с известной долей приближения рассматривать как своеоб-
разную примесь к основному изотопу, то существует возможность изменения соотношения стабильных изотопов в солях и металлах под влиянием зонной перекристаллизации [1].
В качестве основного объекта исследования был выбран гексагидрат хлорида магния (М§С12-6Н20). Такой выбор обусловлен тремя факторами. Во-первых, М§С12-6Н20 плавится при низ-
Таблица. Интенсивность линий масс-спектра серосодержащих соединений I, о. е., содержание изотопов, %
Показатель m/z 32SF6 (34SF6) 32sof2 (34sof2)
70(72) 89(91) 108(110) 127(129) 67(69) 86(88)
hn 5,95 21,4 6,48 100 52,7 15,8
h.s 0,238 1,02 0,282 4,6 4,5 1,23
Содержание изотопа с 34S 3,9 4,5 4,2 4,4 7,9 7,2
линий масс-спектра осколочных ионов гексафторида серы (8Р5)+, (8Р4)+, (8Р3)+и (8Р2)+, содержащих изотопы 328 и 348, а также дифторида-оксида серы (80Р2)+ и его осколочного иона (80Р)+, содержащих изотопы 328 и348.
СПИСОК ЛИТЕРАТУРЫ
1. Горшунов Н.М., Гуденко С.В. О возможности разделения изотопов за счет неравновесного колебательного обмена в после-разрядной зоне // Физико-химические процессы при селекции атомов и молекул: Сб. докл. 8-ой Всеросс. научн. конф. - М.: ЦНИИатоминформ, 2003. - С. 133-136.
2. Туманов Ю.Н. Низкотемпературная плазма и высокочастотные электромагнитные поля в процессах получения материалов для ядерной энергетики. - М.: Энергоатомиздат, 1989. -279 с.
3. Пушкарев А.И., Новоселов Ю.Н., Ремнев Г.Е. Цепные процессы в низкотемпературной плазме. - Новосибирск: Наука, 2006. - 226 с.
4. Власов В.А., Пушкарев А.И., Ремнёв Г.Е., Сосновский С.А., Ежов В.В., Гузеева Т.И. Экспериментальное исследование и