ПРОЦЕССЫ И АППАРАТЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ
УДК 66.065.52.05
В. А. Лашков, С. Г. Кондрашева, Д. А. Казанцева
ИСПОЛЬЗОВАНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ ПРИ УСОВЕРШЕНСТВОВАНИИ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ ПРОЦЕССА КРИСТАЛЛИЗАЦИИ ГЕКСАМЕТИЛЕНТЕТРАМИНА
Ключевые слова: кристаллизация, гексаметилентетрамин, понижение давления.
Представлены результаты исследований влияния скорости понижения давления парогазовой среды на дисперсный состав кристаллической массы. Расчетно-графическим методом определены эмпирические коэффициенты, входящие в уравнения кинетики кристаллизации. Приведена усовершенствованная технологическая схема кристаллизации гексаметилентетрамина.
Keywords: crystallization, hexamethylenetetramine, pressure reduction.
Results of researches of influence of speed reducing of vapour-gas pressure of medium on disperse of cristall mass composition are presented. The empirical factors entering into the kinetic equations of crystallization are defined by computational-graphic method. The improved technological scheme of crystallization hexamethylenetetramine is resulted.
Эффективность процессов, связанных с переработкой, хранением, транспортированием материала, в значительной мере зависит от его дисперсного состава, который определяет явления, возникающие между частицами [1]. В данной работе приводятся результаты исследования влияния скорости понижения парогазового давления на кинетику кристаллизации растворов. Кинетика кристаллизации характеризуется интенсивностью образования зародышей и скоростью роста кристаллов в течение времени. Размер кристаллов химических веществ влияет на условия их хранения (слеживаемость) или переработку в твердые формы (таблетируемость).
Непрерывное повышение вакуума над поверхностью раствора приводит к адиабатическому самоиспарению жидкости, охлаждению и пересыщению раствора, а также выделению твердой фазы, размер кристаллов которой определяется способностью кристаллизуемой соли к созданию пересыщенных растворов. Изменяя скорость отвода парогазовой смеси из свободного объема аппарата можно обеспечить благоприятный интервал охлаждения раствора для получения продукта требуемых размеров. Поскольку растворимость веществ в значительной степени зависит от температуры раствора, то изменения параметров в парогазовой фазе оказывают влияние на кинетику зародышеобразования и роста кристаллов [2].
При массовой кристаллизации, происходящей в процессе непрерывного понижения давления, в различных точках раствора происходит зарождение центров кристаллизации и рост уже существующих кристаллов. Перемешивание раствора при его объемном вскипа-
нии снижает сопротивление, обусловленное диффузионным пограничным слоем, и способствует более равномерному притоку растворенной массы к граням, что приводит к образованию кристаллов правильной формы [3]. Следовательно, кристаллическая масса в ходе процесса распределяется между центрами кристаллизации и кристаллами пропорционально их поверхности, а интенсивность образования зародышей пропорциональна вероятности их появления [4].
Таким образом, распределение кристаллической массы между кристаллами различных фракций запишется уравнением
где Скр - масса кристаллов, ркр - плотность кристаллов, Ф - фактор формы, Ы0 - количество зародышей кристаллов, Ы| - количество кристаллов I -ой фракции, Ккр - радиус кристалла.
Зависимость (1) представляет собой случай, когда размеры кристаллов в каждой фракции приняты усредненными. Численное значение коэффициента формы кристаллов определялось из условия
Для анализа дисперсного состава кристаллической массы использовался микроскопический метод, описанный в работе [5]. По этому методу размер кристаллов измеряется с помощью микроскопа по шкале окуляра-микрометра. Границы фракции устанавливаются через каждые 0,2 мм, а за размер фракции принимается среднее арифметическое ее значе-
По существующей технологии очищенный гексаметилентетрамин, используемый в производстве кальцекса, получают кристаллизацией за счет малоинтенсивного испарительного охлаждения при атмосферном давлении (длительность процесса составляет 15-19 ч). Образование и рост кристаллической массы при этом происходит не во всем объеме, а только на поверхности раствора, где создается пересыщение, с постепенным продвижением зоны кристаллизации вглубь. Вследствие неравномерного охлаждения всего объема раствора готовый продукт имеет нестабильный дисперсный состав кристаллов, влияющий на его хранение и последующую переработку в лекарственную форму.
Анализ технологии получения гексаметилентетрамина, выявил возможность интенсификации процесса и регулирования скорости роста кристаллов за счет кристаллизации понижением давления по определенному закону [6]
где А , В - эмпирические коэффициенты в уравнении Антуана, Тн - начальная температура раствора, т - время, к - скорость снижения температуры.
При выборе скорости изменения температуры к в уравнении (4), влияющей на дис-
(1)
п ~
ФРкр Е^ = °кр ,
I=1 1
(2)
(4)
персный состав кристаллической фазы, возникает необходимость в определении кинетических уравнений, описывающих интенсивность зародышеобразования и скорость роста кристаллов в зависимости от пересыщения раствора.
Для определения скорости роста кристаллов в литературе [5] использована эмпирическая степенная аппроксимация, которая может быть представлена уравнением
Л(|)= ^П8^1 , (5)
Рис. 1 - Лабораторный стенд для исследования кинетики процессов, протекающих при понижении давления парогазовой среды:
1 - вакуумная камера, 2 - весы, 3 - электромеханический привод, 4 - блок дистанционного управления, 5 - вакуумметр, 6 - крышка, 7 - смотровое окно, 8, 9 - бюксы с исследуемым раствором, 10 - термопара, 11 - электронный потенциометр, 12 - термостат, 13 - емкость, 14, 19 - термометры, 15 - адсорбционная камера, 16, 17, 20, 23 - вентили, 18 - конденсатор,
21 - сборник конденсата, 22 - рубашка конденсатора, 24 - сильфон,
25 - контакты, 26 - ползун, 27 - копир, 28 - двигатель постоянного тока,
29 - редуктор, 30 - пускатель, 31 - вакуумный насос, 32 - хроматограф,
33 - штатив, 34 - установка досушки образцов до постоянной массы
где П - пересыщение раствора, к^, а, П - кинетические коэффициенты.
Для определения коэффициентов к: , а, П , входящих в уравнение (5) были проведены экспериментальные исследования процесса кристаллизации гексаметилентетрами-на понижением давления на стенде, представленном на рис. 1 [7].
Стенд состоит из вакуумной камеры 1, в крышке 6 которой имеется смотровое окно 7 для наблюдения за показаниями весов 2. Весы снабжены электромеханическим приво-
дом 3, с блоком дистанционного управления 4. На чашу весов и столик лабораторного штатива 33, помещенных в вакуумную камеру, установлены бюксы 8 и 9 с исследуемым раствором. Регистрация температуры материала в ходе эксперимента осуществлялась с помощью хромель-копелевой термопары 10, подключенной к электронному потенциометру 11. Камера 1 сообщена с системой вакуумирования, состоящей из конденсатора 18, сборника конденсата 21, и вакуумного насоса 31. Давление в камере контролировалось по показаниям образцового вакуумметра 5, температура хладагента - по показаниям образцового термометра 19. Досушка материала до постоянной массы осуществлялась на установке определения влагосодержания материалов 34, а качественный анализ конденсата проводился на хроматографе 32. Для управления режимом снижения влагосодержания использовали регулятор давления, состоящий из пускателя 30, блока питания 29, сильфона 24, контактов 25, ползуна 26, копира 27 и двигателя постоянного тока 28. Регулирование скорости понижения давления осуществлялось включением-выключением электродвигателя привода вакуумного насоса. Задатчиком закона изменения давления во времени в камере 1 служит копир 27.
В ходе эксперимента [6] продолжительность кристаллизации варьировалась в пределах 60-90 мин. Дисперсный состав полученной кристаллической массы анализировался микроскопическим методом, а результаты исследования представлены в таблице 1.
Таблица 1 - Дисперсный состав кристаллов гексаметилентетрамина, %
Режим процесса Диапазоны размеров, мм
кристаллизации 0-0,10 0,10-0,15 0,15-0,20 0,20-0,25
Умеренный ( т =90 мин) 7,0 37,0 51,0 5,0
Интенсивный ( т =90 мин) 16,5 49,5 31,0 3,0
Подстановкой полученных численных значений в уравнения (1), (2) была определена величина фактора формы, которая оказалась равной
Ф = 0,8326 - для 90 мин; Ф = 0,8035 - для 60 мин.
Расхождение в полученных значениях можно объяснить явлением полиморфизма, заключающегося в изменении фактора формы кристаллов одного и того же вещества в зависимости от режимных параметров процесса [8].
Экспериментальное определение скорости роста основано на уравнении [5]
л0) = “(^ Ж • (6)
СК
Графическим дифференцированием функции N = f (К) определялась величина СЫ / СК для различных К. Подстановкой численных значений в уравнение (5) находили значения ^(1) . Иллюстрация результатов представлена на рис. 2, 3.
При нахождении значения величин П и а в уравнении (4), экспериментальные данные обрабатывали согласно рекомендациям [5]. В результате проведенных расчетных операций были получены показатели степени, которые для границ интервала продолжительности составили:
Г = 0,424 - для 90 мин; r = 0,384 - для 60 мин; a =1.
rid) , мкм/с
/
/ /
7 /
> /
О 0,5 1,0 1,5 Ш R,Kr/(M3'MKM)
Рис. 2 - Зависимость величины
от размера кристаллов: 1 -умеренный режим; 2 - интенсивный режим
Рис. 3 - Зависимость линейной скорости роста кристаллов гексаметилентетрамина от соотношения П / К
Коэффициент kj определялся на основе графической зависимости r|(l) = f(n/R) (рис. 4). При обработке опытных данных было найдено, что kj =0,577.
С учетом полученных результатов скорость роста кристаллов гексаметилентетрамина в исследованном диапазоне параметров можно представить в виде уравнений:
r(l) = 0,577-10 9 nR0,424 - для 90 мин, r(l) = 0,577-10 9 nR0,384 - для 60мин.
Интенсивность образования центров кристаллизации J, образующихся в единице объема за единицу времени, определено из соотношения [5]
J = f(R)r(l), (7)
Обработкой данных по дисперсному составу с помощью пакета прикладных программ «Mathematics» получена зависимость (рисунок 4) J = f (П), которая описывается с точностью 12% уравнением вида
J = 0,02596+ 156,53П -117,99П2 +37,75П3 , (8)
Принципиальная схема установки [9] для выделения твердой фазы из раствора, в основе работы которой использованы результаты экспериментальных исследований, представлена на рис. 5. Установка содержит реактор вакуумного выпаривания 1, подключенный к линиям сжатого воздуха 2, воды 3, пара 4, аммиака 5 и состоящий из корпуса 6 с крышкой и днищем, загрузочного патрубка 7 с вентилем 8, смотрового окна 9, патрубка выгрузки 10. Реактор 1 сообщен с вакуумным кристаллизатором 11 при помощи трубопровода с вентилем 12, подключенным также к линии сжатого воздуха 2 и системе вакууми-рования, которая включает конденсатор 13, вакуумный насос 14, реле давления 15, вакуумметр 16, датчик температуры 17, вентиль 18. Вакуумный насос 14 соединен с источником переменного тока через реле давления 15 и магнитный пускатель 19. Процесс осуще-
ствляется следующим образом. Раствор гексаметилентетрамина в воде (40%) после отстаивания в течение 30-40 мин фильтруют и подают на стадию выпаривания в реактор 1. В процессе выпаривания при температуре 65-68 0С и разрежении 0,4-0,6 кгс/см2 в течение 67 ч из раствора отгоняются излишки воды. По окончании выпаривания (концентрация раствора составляет 60-65%) перекрывают линии воды 3, пара 4 и аммиака 5, герметизируют вакуумный кристаллизатор 11 и включают вакуумный насос 14. После достижения в кристаллизаторе остаточного давления, соответствующего давлению насыщенных паров воды при температуре выпаривания (контроль осуществляется при помощи вакуумметра 16), открывают вентиль 12 и массу загружают за счет разрежения в аппарате. Процесс кристаллизации осуществляют путем непрерывного снижения давления по экспоненциальному закону, что обеспечивает линейный закон изменения температуры. Экспоненциальный закон (4) изменения остаточного давления задают при помощи реле давления 15, периодически замыкающего и размыкающего контакты магнитного пускателя 19, подключенного к приводу вакуумного насоса 14. При вакуумировании кристаллизатора 11 происходит интенсивное испарение растворителя, пары которого поступают в конденсатор 13. Удалением части растворителя достигается необходимая степень пересыщения, влияющая на рост кристаллов. Достижение необходимой конечной температуры 35-38 0С обеспечивается снижением остаточного давления до величины равной 4,0-5,5 кПа, при этом скорость охлаждения раствора к составляет 0,45-0,55 К/мин. По окончании процесса полученный продукт удаляют из кристаллизатора 11 через линию выгрузки сжатым воздухом.
Рис. 4 - Зависимость скорости за-родышеобразования гексамети-
лентетрамина от пересыщения раствора
Рис. 5 - Принципиальная схема установки для кристаллизации гексаметилентетрамина: 1 -реактор, линии подачи: 2 - сжатого воздуха, 3 - воды, 4 - пара, 5 - аммиака, 6 - корпус, 7 - патрубок загрузки, 8, 12, 18 - вентили, 9 -смотровое окно, 10 - патрубок выгрузки, 11 -вакуумный кристаллизатор, 13 - конденсатор, 14 - вакуумный насос, 15 - реле давления, 16 -вакуумметр, 17 - датчик температуры, 19 -магнитный пускатель
Методика расчета процесса кристаллизации гексаметилентетрамина и усовершенствованная технологическая схема производства рекомендованы к использованию на
предприятиях, специализирующихся на выпуске лекарственных препаратов.
Литература
1. Кондрашева, С.Г. Анализ процесса сдвига сыпучего материала / С.Г.Кондрашева, В.А.Лашков, Л.Г.Голубев, П.К.Кириллов // Вестн. Казан. технол. ун-та. - 2003. - № 2, - С. 148-158.
2. Лашков, В.А. Тепломассоперенос в условиях внешней задачи для процессов, протекающих при понижении давления среды / В.А.Лашков, С.Г.Кондрашева // ИФЖ. - 2000. - Т.73. - №2. - С. 550556.
3. Хамский, Е.В. Кристаллизация в химической промышленности / Е.В.Хамский. - М.: Химия, 1979. - 344 с.
4. Кидяров, Б.И. Кинетика образования кристаллов из жидкой фазы / Б.И. Кидяров. - Новосибирск: Наука, 1979. - 134 с.
5. Веригин, А.Н. Кристаллизация в дисперсных системах / А.Н.Веригин, И.А.Щупляк, М.Ф. Михалев. - Л.: Химия, 1986. - 248 с.
6. Казанцева, Д.А. Исследование процесса кристаллизации лекарственных препаратов понижением давления парогазовой среды / Д.А. Казанцева [и др.] //Вакуумная техника и технология Тез. докл. III Российской науч.-техн. конф. - Казань, 2007. - С. 110-111.
7. Газизова, Д.А. Лабораторный стенд для исследования процессов, протекающих в условиях непрерывно повышающегося вакуума / Д.А. Газизова и др. //Вакуумная техника и технология //Тез. III Российск. науч.-техн. конф. - Казань, 2007. - С. 119-120.
8. Матусевич, Л.Н. Кристаллизация из растворов в химической промышленности / Л.Н.Матусевич. - М.: Химия, 1968. - 304 с.
9. Пат. 2188825 Российская Федерация, МКИ7 C 07 D 4/18. Способ кристаллизации гексаметилентетрамина /Лашков В.А, Бузуев В.В. - № 200117720/04; заявл. 04.07.2000; опубл. 10.09.2002, Бюл. № 24. - 4 с.
© В. А. Лашков - д-р техн. наук, проф., зав. каф. машиноведения КГТУ, [email protected];
С. Г. Кондрашева - канд. техн. наук, доц. той же кафедры; Д.А.Казанцева - студ. КГТУ.