DC 574.6:477.63/64
INVESTIGATION OF THE INFLUENCE OF CLIMATE FACTORS ON THE ACTIVITY OF BEES BY COMPUTER SIMULATION COLONY
SAIDZODA ISROIL MAHMAD Candidate of Technical Sciences, Head of the Informatics Department of the Tajik National
University, Dushanbe, Tajikistan
TAGOEV SHAMSULLO KHURSANDOVICH
Assistant of the Informatics Department of the Tajik National University.Address: 17, Rudaki
av., Dushanbe, 734025, Tajikistan
Annotation. The article uses computer modeling to investigate the effects of external temperature and humidity on the growth and development of honey bee families. Understanding the impact of these climatic factors on these processes will help provide bees with suitable living conditions, prevent various diseases and increase the level of bee productivity.
In the developed model, the corresponding mathematical functions are constructed for the climatic factors under consideration. The numerical results obtained with the model are necessary to understand and predict the behavior of bees in different climatic conditions, and to predict the impact of climate change on the life cycle, reproduction and productivity of honey bees.
Keywords: temperature, air humidity, comparison, program, model, function, graph, environment, bee.
Taking into account the influence of climatic factors when modeling the activities of a honey bee colony is an important task for understanding and predicting the behavior of bees in different climatic conditions. Computer simulations can take into account parameters such as temperature, air humidity, precipitation, daylight hours and other factors that can affect the activity and behavior of bees. This allows for a more accurate prediction of how climate change may affect the life cycle, reproduction, and productivity of honey bees. Such models help to develop strategies to protect bees from adverse climatic conditions and take measures to maintain their population [3, 14].
Among all external factors, temperature and humidity play a critical role in the activity of the bee colony. Bees very carefully control the temperature and humidity in the hive to ensure optimal conditions for the development and survival of their colony. It is important for beekeepers to understand the effects of temperature and humidity on the bee colony in order to provide them with suitable living conditions. It will also help prevent various diseases and increase the productivity of bees. For these reasons, we paid special attention to these two factors when modeling.
Bees maintain a certain temperature inside the hive, which is necessary for the development of larvae and the preservation of mature bees. They use their muscles to create heat and regulate air circulation in the hive to maintain an optimal temperature. Excessive heat or cold can negatively affect the development of a bee colony [9-10].
The effect of temperature on bees depends on several aspects and can be both positive and negative.
1. Bee colony development: Temperature affects the development of the bee colony. For example, the optimal temperature for bee larva development is about 34°C. At this temperature, the larva develops most efficiently. If the temperature is too high or low, it can slow down or disrupt the development of the bee colony.
2. Nectar and pollen collection: Temperature also affects the activity of bees when collecting nectar and pollen. In cold weather, bees can be less active and fly out less to search for flowering plants.
3. Regulating the temperature in the hive: Bees also actively regulate the temperature inside the hive. They can gather around the queen to heat her, or ventilate the hive to cool it down in hot weather [10].
Modeling the effects of temperature helps develop strategies to maintain honey bee populations in a changing climate.
Air humidity also plays an important role in the activity of honey bees.
1. Breeding a bee colony: High humidity can lead to condensation in the hive, which can negatively affect the development of the bee colony. Also, high humidity can contribute to the development of fungal diseases, which can be dangerous for bees. Low humidity can also be a problem, as dry air can lead to dehydration of bees and their larvae [10].
2. Nectar andpollen collection: High humidity can make it difficult to collect nectar and pollen, as it can lead to dew formation on the flowers. This can make it difficult for bees to access nectar and pollen.
3. Hive temperature regulation: High humidity can make it difficult for moisture to evaporate from the hive, which can affect the bees' ability to regulate the temperature inside the hive [9-15].
4. Bee health: High humidity can be associated with the development of pathogenic organisms that can be dangerous to bee health.
Modeling the effect of humidity on the activity of honey bees helps to better understand what conditions are favorable for their life. It also, as in the first case, helps to develop strategies to maintain the health and population of bees in a changing environment.
Many scientists, such as S.Y. Boldyrov [1], Y. Karpov [2], F.S. Komiliyon, I.M. Saidzoda [36, 8-14], A.F. Rybochkin [7] and others, were engaged in the study of the influence of temperature and humidity on biological systems using methods of mathematical and computer modeling.
The influence of temperature on growth and development, as well as on the activity of the honey bee colony in the computer model is taken into account using the following function [ 9; 10; 14]:
( -1.4286T2 + 82.857T - 815.71, если 20 < T < 27 fCn-J -21T2 + 1366T — 21318, если 27 < T < 32
/()=| —67.5T2 + 4607.5T — 77675, если 32 < T < 37 ()
{ —7.25T2 + 559.5T — 10410, если 37 < T < 42,
where is /(7)the temperature function of growth and development of bee individuals from the stage of egg laying by the queen bee to the stage of egg formation into adult bees T = T(t) is the average daily temperature (t e [t0; tfc], к e N).
In the same way, the model takes into account the influence of air humidity on the growth, development and activity of the bee colony [3-6]:
f —0.3889V2 + 41.889v — 747.5, если 30 < v < 55 flf(v) = { —0.4467v2 + 83.947v — 2978.5, если 55 < v < 87 (2)
(1.0998v2 — 270.17v + 16338, если 87 < v < 100,
where is^(v) the function of humidity for the processes of growth and development of bee individuals from the stage of egg laying by the queen bee to the stage of egg transformation into adult bees v = v(t) is the average daily humidity (t e [t0; tfc], к e N).
According to the study [13], at an optimal temperature of 34°C and air humidity of 85-90%, 950 out of 1000 eggs laid by the queen bee remain before reaching the stage of an adult bee. This indicator is considered the best indicator of the development of bee family individuals.
The computer model is implemented in the obj ect-oriented programming language C++ Builder XE7, according to the flowchart shown in Figure 1.
Figure 1 - Scheme of implementation of the computer model
Computer numerical results of calculating the values of the temperature function and the air humidity function, as well as their graphical representations, are shown in Figure 2.
T[iJ F(T) V[i] F(V)
20 21 22
23
24
25
26 28
33
34
35
36
37
38
39
40
41
42
Figure 2 - Results of calculating the values of the temperature function and the air humidity function, and their graphical representations
One of the goals of developing the computer program was to check the adequacy of the constructed functions by comparing the values of the actually calculated results of the temperature function (1) and the air humidity function (2) with real empirical data. To do this, the mathematical capabilities of the MS Excel 2016 spreadsheet function building library were used. When performing program calculations, it was required that the values of the input data did not exceed the specified conditional limits [3, 8].
A comparison of the obtained graph of the temperature function with the graph of real temperature data is presented in Figure 3, and the procedure for the same comparison for the air humidity function is shown in Figure 4. From the graphs of these functions, one can clearly imagine the influence of temperature and humidity on the growth and development processes of individuals of the honey bee colony.
More precisely, from the graphical results of the computer model, it can be seen that at the optimal temperature (340C), the maximum value of the number of bee individuals is 950. This means that out of 1000 eggs laid by the queen bee, 950 individuals remain before reaching the stage of an adult bee.
Figure 3 - Graph of the temperature function built on MS Excel 2016 and its comparison with the graph of real temperature data
1000 900
soo
700 600 500 400 300 200 100 0
/yf ' tf у \ t>-\ \
у/
О
\
35 40 45 50 55 60 65 70 75 SO 85 90 95 100 105 —■— Real data —■— Model data
Figure 4 - Graph of the humidity function based on MS Excel 2016 and its comparison with the graph of real air humidity data
Conclusion. Thus, to summarize, we can conclude that the external temperature and humidity of the air play a huge role in the growth and development of honey bee families. Understanding the essence of the influence of these climatic factors on these processes will help to provide bees with suitable living conditions, prevent various diseases and increase the level of bee productivity [8].
The developed computer model takes into account the effects of temperature and humidity on the activity of the honey bee colony. For these factors, the corresponding mathematical functions are constructed.
The numerical results obtained with the model are necessary to understand and predict the behavior of bees in different climatic conditions, and to predict the impact of climate change on the life cycle, reproduction and productivity of honey bees.
REFERENCES
1. Болдыров, С. Я. Регулирование температуры и влажности воздуха в зимовниках [Текст] / С.Я. Болдырев // Вопросы промышленной технологии производства продуктов пчеловодства. - Рязан, 1978. - С. 173-190.
2. Карпов, Ю. Имитационное моделирование систем. Введение в моделирование с AnyLogic 5 [Текст] / Ю. Карпов // СПб: БХВ-Петербург, 2005. - 400 с.
3. Комилиён, Ф. С. Амсиласозии математикии мархилахои хаёти популятсияи оилаи занбури асал [Матн] / Ф.С. Комилиён, И.М. Саидзода // Паёми Донишгохи давлатии Бохтар ба номи Носири Хусрав. - 2022. - № 2-1 (96). - С. 5-14. - EDN: ILDIZS.
4. Комилиён, Ф. С. Амсиласозии математикии таъсири беморихои сирояткунанда ва организмхои зараррасон ба рушди индивидхои оилаи занбури асал [Матн] / Ф.С. Комилиён, И.М. Саидзода // Паёми Донишгохи давлатии Дангара. - 2022. - № 2. - С. 2842.
5. Комилов, Ф. С. Трансформация математической модели в инструмент по прогнозированию динамики рыбной популяции экосистемы мелководного водохранилища / Ф. С. Комилов, И. М. Саидов, М. Р. Еров, И. Л. Косимов // Вестник Таджикского национального университета. Серия естественных наук. - 2017. - № 1-5. - С. 27-32.
6. Комилиён, Ф. С. Тахлили математикии амсилаи мархилахои хдёти оилаи занбури асал аз руи хусусиятхои чинсй [Матн] / Ф.С. Комилиён, И.М. Саидзода // Паёми Донишгохи миллии Точикистон. Бахши илмхои табий. - 2022. - № 3. - С. 20-35.
7. Комилиён, Ф. С. Усулхои бахисобгирии таъсири омилхои табий ва антропогенй дар амсилаи математикии ташаккул ва рушди мархилахои хаёти оилаи занбури асал [Матн] / Ф.С. Комилиён, И.М. Саидзода // Паёми Донишгохи миллии Точикистон. Бахши илмхои табий. - 2023. - № 2. - С. 40-52.
8. Рыбочкин, А. Ф. Контроль и управление жизнедеятельностью пчелиных семей: дисс ... док. наук [Текст] / А.Ф. Рыбочкин. - Москва, 2004. - 644 с.
9. Саидзода, И. М. Амсиласозии математикии популятсияи оилаи занбури асал [Матн] / И.М. Саидзода // Паёми Донишгохи давлатии тичорати Точикистон. - 2022. - № 2 (41). - С. 215220.
10. Саидзода, И. М. Хусусиятхои экосистемаи обанборхо ва амсиласозии компютерии онхо / И. М. Саидзода, М. Р. Еров. - Душанбе : Донишварон, 2021. - 118 с.
11. Саидзода, И. М. Барномасозии компютерии фаъолияти занбури асал вобаста ба таъсири беморихо ва зараррасонхо [Матн] / И.М. Саидзода, Ф.С. Комилиён // Паёми донишгохи давлатии Хоруг. - 2023. - № 1. - С. 45-56.
12. Саидзода, И. М. Компьютерное моделирование популяции медоносной пчелиной семьи методом Рунге-Кутта [Текст] / И.М. Саидзода, Ф.С. Комилиён // Вестник Таджикского национального университета. Серия естественных наук. - 2022. - № 2. - С. 26-42.
13. Саидзода, И. М. Накши харорат дар рушди оилаи занбури асал [Матн] / И.М. Саидзода // Паёми Донишгохи давлатии Дангара. - 2023. - № 2 . - С. 27-38.
14. Саидов, И. М. Асосхои амсиласозии риёзй [Матн] / И.М. Саидов. - Душанбе: Мехроч-граф, 2020. - 152 с.
15. Saidzoda, I. M. МаШетайса1 model of a bee colony by gender in a stationary case / I. M. Saidzoda // Scientific research of the SCO countries: synergy and integration : Proceedings of the International Conference, Beijing, 14 октября 2023 года. Vol. Part 1. - Beijing: Инфинити, 2023. - P. 143-148. - DOI 10.34660/INF.2023.24.14.431.