Aleksey S. Karataev Cognitive information technologies in the digital economics
487
УДК 550.8.05+631
DOI: 10.25559/SITITO.14.201802.487-492
INTELLECTUAL METHODS OF ANALYSIS OF GEOGRAPHIC INFORMATION INFRASTRUCTURE OF THE REGION
Aleksey S. Karataev
Surgut State University, Surgut, Russia
ИНТЕЛЛЕКТУАЛЬНЫЕ МЕТОДЫ АНАЛИЗА ГЕОИНФОРМАЦИОННОЙ ИНФРАСТРУКТУРЫ РЕГИОНА
А.С. Каратаев
Сургутский государственный университет, г. Сургут, Россия
© Karataev A.S., 2018
Keywords Abstract
Geographic information systems; Fuzzy methods of exploration of geo-informational space as a system of systems are considered. The ar-eas of system of systems; application of digital specialized plan-schemes as fuzzy projections of geo-informational space are dis-cussed.
cognitive frame; In the process of presentation of the research materials the necessity of forming a single geo-informational
fuzzy granules. space (UGIS) on the principles of geo-interoperability is formulated and substantiated. The sources and tools
for obtaining initial data were evaluated. The components of the mechanism of information interaction of geographical, economic and social characteristics of regions were considered. The principles of using the concept of cognitive space to describe UGIS in the project frame SMART (Satellite monitoring of agricultural development of territories). The problem of manifestation of various types of uncertainties at the main levels of ob-taining and processing of information is considered. It is shown that for each type of uncertainty it is necessary to carry out: search of the corresponding mathematical description and representation of concrete type of uncer-tainty; the choice of the mathematical device by means of which it is possible to operate (to adjust parameters) model with the chosen uncertainty; existence of an effective way of measurement of real uncertainty in any ana-lyzed situation; development of methodology of formation of adequate models for real objects and processes of monitoring to choose indicators of uncertainty which can be calculated. It is shown that the spatially distributed information obtained, including by remote sensing of the Earth is three large groups: semantic, metric and topo-logical. The structured set of these groups of information about a particular area, presented in the form suitable for automated processing, forms a digital model of the area. This model is based on the ability of one group of information (as a complex system) to use parts of another group, that is, the ability to mutually use information in each of these groups (systems). In other words, we are talking about geo-interoperability, which is used in the study of the model of UGIS, in the process of forming a digital plan-schemes for receiving of additional infor-mation about the objects included in the resulting information product.
Ключевые слова Аннотация
Геоинформационные системы; Рассмотрены нечеткие методы исследования геоинформационного пространства как системы си-системы систем; стем. Обсуждаются области применения цифровых специализированных план-схем, как нечетких
когнитивное пространство; проекций геоинформационного пространства. В процессе изложения материалов исследования
нечеткие гранулы. сформулирована и обоснована необходимость формирования единого геоинформационного про-
странства (ЕГИП) на принципах геоинтероперабельности. Оценивались источники и инструменты получения исходных данных. Рассматривались компоненты механизма информационного взаимовлияния географических, экономических и социальных характеристик регионов. Обоснованы принципы использования концепции когнитивного пространства для описания ЕГИП в рамках проекта СМАРТ (Спутниковый Мониторинг Аграрного Развития Территорий). Рассмотрена проблема проявления различного вида неопределенностей на основных уровнях получения и обработки информации. Показано, что для каждого вида неопределенности необходимо осуществить: поиск соответствующего математического описания и представления конкретного типа неопределенности; выбор
Abo??!!
Aleksey S. Karataev, Doctor of Economics sciences, Professor, Head of the Chair Department of the finance, money circu-lation and credit, Surgut State University (1 Lenina Str., Surgut 628412, Tyumen region, Russia), http://orcid.org/0000-0001-8069-410X, karataev86@mail.ru
Vol. 14, no 2. 2018 ISSN 2411-1473 sitito.cs.msu.ru
Modern Information Technologies and IT-Education
488
Когнитивно-информационные технологии в цифровой экономике А.С. Каратаев
математического аппарата, с помощью которого можно управлять (настраивать параметры) моделью с выбранной неопределенностью; существование эффективного способа измерения реальной неопределенности в любой анализируемой ситуации; разработку методологии формирования адекватных моделей для реальных объектов и процессов мониторинга, чтобы выбрать показатели неопределенности, которые можно вычислить. Показано, что пространственно-распределенная информация, получаемая, в том числе и с помощью дистанционного зондирования Земли составляет три большие группы: семантическую, метрическую и топологическую. Структурированная совокупность этих групп информации о конкретной территории, представленной в форме, пригодной для автоматизированной обработки, образует цифровую модель местности. В основе такой модели заложена способность одной группы информации (как сложной системы) использовать части другой группы, то есть способность взаимно использовать информацию в каждой из этих групп (систем). Иначе говоря, речь идет о геоинтероперабельности, которая используется в рамках исследования модели ЕГИП, в процессе формирования цифровых план-схем для получения дополнительной информации об объектах, включаемых в результирующий информационный продукт.
Introduction
In recent years, the emergence of the concept of a digital society, in which most of the workers are engaged in the storage, processing and use of information, especially the highest form of knowledge, has been clearly reflected in the development and development of the Digital Earth Project [1].
Within the framework of this direction, the SMART (Satellite Monitoring for Active Development of Territories) project is being implemented, developed and realized in the Southern Federal District [1-2]. The main stages of the "life cycle" of satellite information in GIS geographic information systems include the following main points:
1. Satellite data acquisition
2. Archiving
3. Primary processing
4. Thematic processing
5. Formation of information product (Maps, reports, digital plan diagrams (DPD)
To implement the version of the last three stages, research was conducted, methods and application of the methods [2, 3], devices [2, 4, 5] and software products [6, 7] for intellectual support of relevant digital technologies were created [8-14].
In the process of these studies, the need for the formation of a single geographic information space (UGIS) on the principles of geo-in-teroperability was formulated. The sources and instruments for obtaining initial data were evaluated. The components of the mechanism of information interaction of geographical properties of regions were considered.
According to the modern interpretation [15, 16]. Ontology in Geoin-formatics is "an exact specification of the conceptualization of the subject area", of course, "with certain restrictions depending on the area of interest, and should include a dictionary of terms and some specifications of their meanings. The use of ontologies contributes to the creation of adequate conceptual models, providing high-quality, controlled information integration" [16].
The concept of Cognitive Space (CP) which appeared originally in linguistics, is used in other subject areas, including geographic information systems. At the same time, CP is "an operational self-generating and self-regulating system in which human communicative experience is formed, developed and transformed" [8]. The concept of cognitive space can be used for the interests of providing cognitive interoperability in the formation of geographic information environment. The concept of CP allows to take into account the
multifactorial interaction of individual systems, studied and investigated in the space monitoring of the earth's surface in [17], within the concept of SoS (System of Systems), for which reference systems, thought processes, quantitative analysis, instruments and design methods are incomplete and/or fuzzy.
The prospect of types UGIS
With regard to UGIS, we note the prospects of the following types of System of Systems (SoS):
• directed [18], in which there is a dominant moderator who has the right to issue orders to the constituent systems and managing their resources;
• acknowledged) [19,20], which, though has a dominant a moderator, but having the ability only to recommend to the constituent systems to change itself according to the chosen scheme (architecture);
• collaborative, in which systems coordinate their actions with each other on each emerging problem, but there is no single moderator, project manager or similar dedicated management body [21, 22].
Geo-lnformation Space (CIS)
Geo-informationTechnosphere
[GIT)
Û
Knowledge data (KD)
Û
Organizational and Legal Sphere (OLS)
Economic and Social Sphere (ESS)
Fig. 1. The unified geo-information space (UGIS] Рис. 1. Единое геоинформационное пространство (UGIS]
This approach complements the concept of cognitive (in this case, geo-information] space with the aspect of situational response to search for coordinated images of information they operate in the course of their activities.
Современные информационные технологии и ИТ-образование
Том 14 № 2 (2018) ISSN 2411-1473 sitito.cs.msu.ru
Aleksey S. Karataev
Cognitive information technologies in the digital economics
489
UGIS as System of Systems
Linking systems with a joint SoS provides interaction and synergy of enterprise management systems, computer management, communication and information, intelligence and so on. A system of systems [11,14] - is large-scale parallel and distributed systems whose components are the complex systems themselves. The system of system education includes the integration of systems into a system that ultimately contributes to the evolution of social infrastructure. The most important features of SoS are their synergy and initial uncertainty of real functioning situations.
The uncertainty of information in UGIS
Considering the problem of uncertainty at the main levels of obtaining and processing information [23-26] for each type of uncertainty, it is necessary to implement:
• search for the appropriate mathematical description and representation of a particular type of uncertainty;
• choice of mathematical mechanism, with which it is possible to control (adjust parameters) model with the selected type of uncertainty;
• finding an effective way to measure real uncertainty in any situation under analysis;
• development of a methodology to generate adequate models for real objects and monitoring processes to select the uncertainty indicators that can be calculated.
In fuzzy logic, as in natural language, all concepts are graded by the degree of truth. Besides, in fuzzy logic everything is granular. The granule, in this case, means [Zadeh L. A., 1997] a group of objects, united by in distinguish ability, similarity, proximity (i.e. relations, which have at least symmetry properties).
Granule
Formally: granule ¡5 grouping objects, defined by generalized limitation : X l=r ~ P
I
-—'/ relation —j> connective
fuzzy variable
b) every A. is unimodal and normal fuzzy set;
c) neighboring fuzzy sets A., Aj should have a small overlap area; it is generally assumed that ApA< 0.5.
As an example of fuzzy granulation, it is possible to take a set of values of the linguistic variable "error binding to a local coordinate system". Here 7 terms form a covering set of terms, but not its partition, because neighboring terms are crossing.
Fig. 2. Cognitive frame as a collection of fuzzy granules Рис. 2. Когнитивный фрейм как совокупность нечетких гранул
A cognitive frame is a fuzzy frame whose slots correspond to fuzzy or linguistic values [14, 17, 25].
The cognitive frame can be seen as the result of granulation of UGIS information, as a linguistic variable in which the family of fuzzy sets is compared to a term set. That is, it consists of normal fuzzy sets F={A1,..., An}, where any two adjacent sets have an overlap region. In this case, the domain of reasoning X must satisfy the conditions of fuzzya-covering and so-called se-mantic consistency, which are reduced to the following restrictions:
а) the number of elements of the set f is small; according to Miller's law it is within 7+ 2;
Fig 3. Spas form a cover term sets Рис. 3. Spas формируют накрытие множеств терминов Granular values of linguistic variable: 0 - zero error; +1 - small affirmative error; +2 - middle affirma-tive error; +3 - big affirmative error; -1 -small negative error; -2 - middle negative error; -3 - big negative error
The structure of the information granulation in the framework of triangulated model [13, 25]
The study used the following common scheme of granulation of information:
GR = (X, G, C, M, T>, where:
X - field of reasoning;
G - a family of information granules;
C - the set of generalized constraints, (each type of restriction defines the requirements for the choice of the method of granulation); M - many formal methods of granulation;
T - the set of transitions between levels of granulation of (transformations of the granules).
Features of formation of SoS geographic information space
Spatially distributed information obtained, including by remote sensing of the Earth (ERS) is three large groups: semantic, metric and topological. A structured collection of these groups of information about a specific area, presented in a form suitable for automated processing, forms a digital terrain model (DTM).
The base of such DTM is the ability of one information groups (as systems) use parts of another group [9, 10, 27], that is, the ability to mutually use information in each of these groups (systems). In other words, we are talking about geo-interoperability.
Geo-interoperability.
International organization for standardization ISO 19119: "Interoperability is the ability to connect, execute programs or transfer data among various functional modules in a way that does not require user to have knowledge about the characteristics of these modules» [27]. This means that two (or more) systems can work together to accomplish the task, provided that they are mutually interoperable. In the framework of geographic information systems "interoperabili-
Vol. 14, no 2. 2G1S ISSN 2411-1473 sitito.cs.msu.ru
Modern Information Technologies and IT-Education
ty is the ability of information sys-tems to:
• free exchange of all kinds of spatial information about the Earth and about objects and phenomena, and also above and below the Earth's surface;
• joint network use of the software intended to manage this information».
Received results
It is obviously, storing and maintaining such a constantly evolving model requires appropriate information resources available, at this stage, within the framework of the data warehouse (DW) concept. The form of geo-database organization that combines DTM and relational databases is the most common form of organization at the moment. However, the complexity of such an organization caused by a set of instruments for creating and maintaining a data topology creates certain problems.
The problems of application of the algorithm and fuzzy triangulation methods in the framework of triangulated model of SoS components in the process of formation of digital diagrams for more information about the objects included in the resulting information product were considered.
References
[1] Lupyan E., Masurov A.A., Nasirov R.R., Proshin A., Flitman E., Krasheninnikova Y. Technologies for building remote monitoring information systems. Sovremennye proble-my distantsionnogo zondirovaniya Zemli iz kosmosa. 2011; 8(1):26-43. Available at: http://jr.rse.cosmos.ru/article.aspx-?id=820&lang=eng (accessed 16.04.2018). (In Russian)
[2] Akperov I.G., Kramarov S.O., Lukasevich V.I., Povh V.I., Kh-ramov V.V., Radchevskij A.N. Sposob formirovaniya cifrovoj plan-skhemy obektov selskohozyajstvennogo naznacheniya i sistema dlya ego realizacii [Method of forming a digital plan schema objects for agricultural purposes and the system for its realization]. Patent RF, no. 2612326, 2017.
[3] Akperov I.G., Kramarov S.O., Khramov V.V., Mitjasova O.Y., Povh V.I. Sposob identifikacii protyazhennyh ob"ektov zemnoj poverhnosti [Method of identification of extended objects of the Earth's surface]. Patent RF, no. 2640331, 2017.
[4] Khramov V.V., Barannik A.A., Palyenko A.V., Nasonov A.S., Khramov S.V., Zherebilo D.S. Ustrojstvo dlya otslezhivaniya konturov dvumernykh obektov [Device to track the paths of two-dimensional objects]. Patent RF, no. № 2104580, 1998.
[5] Khramov V.V., Goncharov V.V. Ustrojstvo dlya otslezhivaniya konturov dvumernykh obektov [Device to track the paths of two-dimensional objects]. Patent RF, no. 2050594, 1995.
[6] Mitjasova O.Y., Akperov I.G., Kramarov S.O., Khramov V.V Sistema analiza kosmicheskih snimkov (SAKS) [Space images analysis system]. Program on computer, no. RU 2017615097, 2017.
[7] Povh V.I., Loschilin A.A., Khalturin A.G. and others. Cifrovaya geoehkonomicheskaya sistema upravleniya selhozproizvod-stvom (AIS "Hozyain") [Digital geo-ecological farming control system]. Program on computer, no. RU 2018614994, 2018.
[8] Gurevich L. Cognitive space of metacommunication. Irkutsk: IGLU, 2009. 372 p. (In Russian)
[9] Dulin S.K., Rozenberg I.N. The development of methodological foundations and concepts of Geoinformatics. Sistemy i sred-
stva informatiki = Systems and means of Informatics. 2006; 16(3):201-256. Available at: https://elibrary.ru/item.as-p?id=13060522 (accessed 16.04.2018). (In Russian)
[10] Cvetkov V. Informatization, innovation processes and geo-information technologies. Izvestiia vysshikh uchebnykh zave-denii. Geodeziia i aerofotos»emka = Proceedings of higher educational institutions. Geodesy and aerial photography. 2006; 4:112-118. Available at: https://elibrary.ru/item.as-p?id=25115047 (accessed 16.04.2018). (In Russian)
[11] Kramarov S., Povkh V., Litvinova I. The pilot project SMART (Satellite Monitoring Agricultural Development of the territory). Intellektual'nye resursy - regional'nomu razvitiyu. 2014; 1:69-72. Available at: https://elibrary.ru/item.as-p?id=25727840 (accessed 16.04.2018). (In Russian)
[12] Kramarov S., Temkin I., Khramov V. The principles of formation of united geo-informational space based on fuzzy triangulation. Procedia Computer Science. 2017; 120:835-843. DOI: 10.1016/j.procs.2017.11.315
[13] Akperov I., Khramov V., Lukascevich V., Mittjasova O. Fuzzy methods and algorithms in data mining and formation of digital plan-schemes in earth remote sensing. Procedia Computer Science. 2017; 120:120-125. DOI: 10.1016/j. procs.2017.11.218
[14] Kramarov S.O., Khramov V.V., Sakharova L.V., Mitjasova O.Yu. Analysis the prospects for applying the concept of geo-information space based on fuzzy methods and algorithms of data processing satellite monitoring. Proceedings of the XIV all-Russian open Conference "Modern problems of remote sensing of the Earth from outer space". Moscow: IKI, pp. 97, 2017. Available at: https://elibrary.ru/item.asp?id=32863380 (accessed 16.04.2018). (In Russian)
[15] Rozenberg I.N., Dulin S.K. On the ontological status of the visualized geodata. Proceedings of the Fifth Scientific and Technical Conference with International Participation "Intelligent control systems in railway transport. Computer and Mathematical Modeling " ISUZHT-2016 (Moscow, November 17- 18, 2016). M.: OJSC "NIIAS", pp. 139-143, 2016. (In Russian)
[16] Bateman J., Borgo S., Luettich K., Masolo C., Mossakow-ski T. Ontological Modularity and Spatial Diversity. Spatial cognition and computation. 2007; 7(1):97-128. DOI: 10.1080/13875860701337991
[17] Lindenbaum T.M., Sakharova L.V., Khramov V.V. Management of complex multivariate systems based on fuzzy analog controllers. Proceedings of the Russia Scientific Conference «The development of modern science» (Science-2017). Rostov-on-Don: RSTU, pp. 65-69, 2017. (In Russian)
[18] Shumilova V.M., Karatayev A.S. Information model of an assessment of financial risks. Modern problems of science and education. 2012; 5:243. Available at: https://elibrary.ru/item. asp?id=18319142 (accessed 16.04.2018). (In Russian)
[19] Karatayev A.S., Karatayeva G.E. The position and role of the analysis in tax control of major taxpayers. Economic sciences. 2010; 6(67):166-172. Available at: http://ecsn.ru/articles/ details/4283 (accessed 16.04.2018). (In Russian)
[20] Karatayev A.S. Tax the capacity of the largest taxpayer and its evaluation: theory and practice. Yoshkar-Ola: String, 2010. 260 p. (In Russian)
[21] Chernova S.V., Karatayev A.S. Public private partnership as the alternative way to finance the goal-oriented programs: problems and perspectives of development. Modern problems
Современные информационные технологии и ИТ-образование
Том 14 № 2 (2018) ISSN 2411-1473 sitito.cs.msu.ru
Aleksey S. Karataev
Cognitive information technologies in the digital economics
491
of science and education. 2012; 3:273. Available at: https:// elibrary.ru/item.asp?id=17822513 (accessed 16.04.2018). (In Russian)
[22] Bezuevskaja V.V., Groshev A.R., Karatayev A.S., Karatayeva G.E., Pelihov N.V. Project management in the system of contextual links University-region. Surgut: SurGU, 2017. 179 p. (In Russian)
[23] Karataev A.S. Tax load and it's dependence on the industry special features. Economic sciences. 2010; 6(67):127-131. Available at: http://ecsn.ru/articles/details/4275 (accessed 16.04.2018). (In Russian)
[24] Karataev A.S. The largest tax payer's instrumentation of calculating taxable capacity's values. Vektor Nauki of Togliatti State University. 2010; 4(14):226-230. Available at: https:// elibrary.ru/item.asp?id=17017679 (accessed 16.04.2018). (In Russian)
[25] Zadeh L.A. Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems. 1997; 90(2):111-127. DOI: 10.1016/ S0165-0114(97)00077-8
[26] Kramarov S.O., Sakhorova L.V., Khramov V.V. Soft Computing in management: management of complex multivariate systems based on fuzzy analog controllers. Scientific bulletin of the Southern Institute of Management. 2017; 3:42-51. (In Russian) DOI: 10.31775/2305-3100-2017-3-42-51
[27] ISO/IEC/IEEE 15288:2015(E) Systems and software engineering - System life cycle processes.
Submitted 16.04.2018; revised 10.06.2018; published online 30.06.2018.
Список использованных источников
[1] Лупян E.A., Мазуров A.A., Назиров Р.Р., Прошин А.А., Флит-ман Е.В., Крашенинникова Ю.С. Технологии построения информационных систем дистанционного мониторинга // Современные проблемы дистанционного зондирования Земли из космоса. 2011. Том 8, № 1. С. 26-43. URL: http://jr.rse.cosmos.ru/article.aspx?id=820 (дата обращения: 16.04.2018).
[2] Способ формирования цифровой план-схемы объектов сельскохозяйственного назначения и система для его реализации: пат. 2612326 Российская Федерация / И.Г Акперов, С.О. Крамаров, В.И. Лукасевич, В.И. Повх, В.В. Храмов, А.Н. Радчевский, заявитель и патентообладатель Южный университет (ИУБиП). № 2015105923; заявл. 24.02.2015.
[3] Способ идентификации протяженных объектов земной поверхности: пат. 2640331 Российская Федерация / И.Г. Акперов, С.О. Крамаров, В.В. Храмов, О.Ю. Митясова, В.И. Повх, заявитель и патентообладатель Южный университет (ИУБиП). № 2015153226; заявл. 11.12.2015.
[4] Устройство для отслеживания контуров двумерных объектов: пат. 2104580 Российская Федерация / В.В. Храмов, А.А. Баранник, А.В. Палиенко, А.С. Насонов, С.В. Храмов, Д.С. Жеребило, заявитель и патентообладатель Ростовское высшее военное командно-инженерное училище ракетных войск им. Неделина М.И. № 96115991/09; за-явл. 31.07.1996.
[5] Устройство для отслеживания контуров двумерных объектов: пат. 2050594 Российская Федерация / В.В. Храмов, В.В. Гончаров, заявитель и патентообладатель Серпуховское высшее военное командно-инженерное училище ракетных войск им. Ленинского комсомола. № 5018830/09; заявл. 15.07.1991.
[6] Система анализа космических снимков (САКС): программа для ЭВМ 2017615097 Российская Федерация / О.Ю. Митясова, И.Г. Акперов, С.О. Крамаров, В.В. Храмов, заявитель и патентообладатель Южный университет (ИУБиП). № 2017612026; заявл. 13.03.2017.
[7] Цифровая геоэкономическая система управления сель-хозпроизводством (АИС «Хозяин»): программа для ЭВМ 2018614994 Российская Федерация / В.И. Повх, А.А. Ло-щинин, А.Г. Халтурин и др., заявитель и патентообладатель Южный университет (ИУБиП). № 2018614994; за-явл. 09.01.2018.
[8] Гуревич Л.С. Когнитивное пространство метакоммуника-ции. Иркутск: ИГЛУ 2009. 372 с.
[9] Дулин С.К., Розенберг И.Н. О развитии методологических основ и концепций геоинформатики // Системы и средства информатики. 2006. Том 16, № 3. С. 201-256. URL: https://elibrary.ru/item.asp?id=13060522 (дата обращения: 16.04.2018).
[10] Цветков В.Я. Информатизация, инновационные процессы и геоинформационные технологии // Известия высших учебных заведений. Геодезия и аэрофотосъемка. 2006. № 4. С. 112-118. URL: https://elibrary.ru/item. asp?id=25115047 (дата обращения: 16.04.2018).
[11] Крамаров С.О., Повх В.И., Литвинова И.Н. Пилотный проект СМАРТ (Спутниковый Мониторинг - Аграрному Развитию Территорий) // Интеллектуальные ресурсы - региональному развитию. 2014. № 1. С. 69-72. URL: https:// elibrary.ru/item.asp?id=25727840 (дата обращения: 16.04.2018).
[12] Kramarov S., Temkin I., Khramov V The principles of formation of united geo-informational space based on fuzzy triangulation // Procedia Computer Science. 2017. Vol. 120. Pp. 835843. DOI: 10.1016/j.procs.2017.11.315
[13] Akperov I., Khramov V, Lukascevich V., Mittjasova O. Fuzzy methods and algorithms in data mining and formation of digital plan-schemes in earth remote sensing // Procedia Computer Science. 2017. Vol. 120. Pp. 120-125. DOI: 10.1016/j. procs.2017.11.218
[14] Крамаров С.О., Храмов В.В., Сахарова Л.В., Митясова О.Ю. Анализ перспектив применения концепции геоинформационного пространства на основе нечетких методов и алгоритмов обработки данных спутникового мониторинга // Сборник тезисов докладов пятнадцатой Всероссийской открытой конференции «Современные проблемы дистанционного зондирования Земли из космоса». Москва: ИКИ РАН, 2017. С. 97. URL: https://elibrary.ru/ item.asp?id=32863380 (дата обращения: 16.04.2018).
[15] Розенберг И.Н., Дулин С.К. Об онтологическом статусе визуализируемых геоданных // «Интеллектуальные системы управления на железнодорожном транспорте. Компьютерное и математическое моделирование» (ИСУЖТ-2016): Пятая научнотехническая конференция с международным участием (Москва, 17-18 ноября 2016). М.: ОАО «НИИАС», 2016. C. 139-143.
Vol. 14, no 2. 2G1S ISSN 2411-1473 sitito.cs.msu.ru
Modern Information Technologies and IT-Education
[16] Bateman J., Borgo S., Luettich K., Masolo C, Mossakowski T. Ontological Modularity and Spatial Diversity // Spatial cognition and computation. 2007. Vol. 7, issue 1. Pp. 97-128. DOI: 10.1080/13875860701337991
[17] Линденбаум Т.М., Сахарова Л.В., Храмов В.В. Управление сложными многофакторными системами на основе нечетких аналог-контроллеров // Сборник научных трудов Всероссийской национальной научно-практической конференции «Современное развитие науки и техники» (На-ука-2017). Ростов-на-Дону: РГУПС, 2017. С. 65-69.
[18] Шумилова В.М., Каратаев А.С. Информационная модель оценки финансовых рисков // Современные проблемы науки и образования. 2012. № 5. С. 243. URL: https:// elibrary.ru/item.asp?id=18319142 (дата обращения: 16.04.2018).
[19] Каратаев А.С., Каратаева Г.Е. Место и роль анализа в налоговом контроле крупнейших налогоплательщиков // Экономические науки. 2010. № 6(67). С. 166-172. URL: http://ecsn.ru/articles/details/4283 (дата обращения: 16.04.2018).
[20] Каратаев А.С. Налоговый потенциал крупнейшего налогоплательщика и его оценка: теория и методология. Йошкар-Ола: Стринг, 2010. 260 с.
[21] Чернова С.В., Каратаев А.С. Государственно-частное партнерство как альтернативный способ финансирования целевых программ: проблемы и перспективы развития // Современные проблемы науки и образования. 2012. № 3. С. 273. URL: https://elibrary.ru/item.asp?id=17822513 (дата обращения: 16.04.2018).
[22] Безуевская В.А., Грошев А.Р., Каратаев А.С, Каратаева Г.Е., Пелихов Н.В. Проектное управление в системе контекстных связей университет-регион. Сургут: СурГУ 2017. 179 с.
[23] Каратаев А.С. Налоговая нагрузка и ее зависимость от отраслевых особенностей // Экономические науки. 2010. № 6(67). С. 127-131. URL: http://ecsn.ru/articles/details/4275 (дата обращения: 16.04.2018).
[24] Каратаев А.С. Инструментарий оценки налогового потенциала крупнейшего налогоплательщика // Вектор науки Тольяттинского государственного университета. 2010. № 4(14). С. 226-230. URL: https://elibrary.ru/item. asp?id=17017679 (дата обращения: 16.04.2018).
[25] Zadeh L.A. Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic // Fuzzy Sets and Systems. 1997. Vol. 90, issue 2. Pp. 111-127. DOI: 10.1016/S0165-0114(97)00077-8
[26] Крамаров С.О., Сахарова Л.В., Храмов В.В. Мягкие вычисления в менеджменте: управление сложными многофакторными системами на основе нечетких аналог-контроллеров // Научный вестник Южного института менеджмента. 2017. № 3. С. 42-51. DOI: 10.31775/23053100-2017-3-42-51
[27] ISO/IEC/IEEE 15288:2015(E) Systems and software engineering - System life cycle processes.
Поступила 16.04.2018; принята в печать 10.06.2018; опубликована онлайн 30.06.2018.
|об авторе:|
Каратаев Алексей Сергеевич, доктор экономических наук, профессор, заведующий кафедрой финансов, денежного обращения и кредита, Сургутский государственный университет (628412, Россия, г. Сургут, ул. Ленина, д. 1), ORCID: http://orcid.org/0000-0001-8069-410X, karataev86@mail.ru
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted reuse, distribution, and reproduction in any medium provided the original work is properly cited.
Современные информационные технологии и ИТ-образование
Том 14 № 2 (2018) ISSN 2411-1473 sitito.cs.msu.ru