УДК 55
Gafurova M.
Candidate of t.s. senior lecturer IUoOaG nm.a.Y.Kakayev
c. Ashgabat, Turkmenistan Muhammedova J.
Lecturer IUoOaG nm.a.Y.Kakayev c. Ashgabat, Turkmenistan Oraznepesova M.
Lecturer IUoOaG nm.a.Y.Kakayev c. Ashgabat, Turkmenistan
INCREASE IN THE WORK OF INTERNATIONAL RELATIONS IN THE OIL AND GAS INDUSTRY
Abstract
This paper examines the growing importance of international relations in the global oil and gas industry. It explores the historical context of resource dependence and geopolitics, analyzing the evolution of international cooperation and competition for energy resources. The paper delves into contemporary factors that escalate the need for robust international relations, including resource depletion, diversification challenges, and the energy transition. It then discusses key areas of international collaboration, such as cross-border pipeline projects, resource security agreements, and technology development partnerships. Furthermore, the paper explores the complexities of international relations, including geopolitical tensions, resource nationalism, and the increasing role of non-state actors. Finally, it analyzes the future trajectory of international relations in the oil and gas industry, considering the rise of renewable energy and the growing emphasis on sustainability.
Introduction
The global oil and gas industry have long been intertwined with international relations, shaping and being shaped by geopolitical dynamics, resource distribution, and international cooperation. Historically, resource dependence and the strategic importance of oil and gas have fueled competition and even conflict between nations. However, the 21st century presents a more complex and multifaceted landscape for international relations in this sector.
The early 20th century saw the rise of major oil companies with global reach, influencing the foreign policy of consuming nations and impacting the political landscape of resource-rich countries. The discovery and exploitation of oil reserves in the Middle East significantly shifted global power dynamics, with major powers vying for control and influence over these strategic resources.
Evolution of International Cooperation and Competition
The post-World War II era witnessed a shift towards greater international cooperation in the oil and gas sector. The creation of the Organization of the Petroleum Exporting Countries (OPEC) in 1960 established a collective voice for oil-producing nations, allowing them to exert greater control over production and pricing. However, competition between oil-producing and consuming countries continued, with resource dependence remaining a major driver of foreign policy.
Contemporary Drivers of Intensified International Relations
Several contemporary factors contribute to the growing importance of international relations in the oil and gas industry:
Resource Depletion and Diversification Challenges
As existing oil and gas reserves deplete, resource-dependent nations are increasingly turning to international partnerships to secure access to new sources of energy. Furthermore, diversification away from a
reliance on hydrocarbons necessitates international collaboration in developing and deploying renewable energy technologies.
The Energy Transition
The global shift towards a low-carbon future compels international cooperation in the development and deployment of cleaner technologies for natural gas extraction and utilization. Additionally, collaboration is needed to develop regulations and market mechanisms for carbon capture, utilization, and storage (CCUS) technologies.
Key Areas of International Collaboration
Several key areas exemplify the intensified role of international relations in the oil and gas industry:
Cross-Border Pipeline Projects:
The transportation of oil and gas across borders often requires international cooperation to build and maintain pipelines that traverse multiple countries. Agreements on transit fees, security measures, and environmental regulations are crucial
Resource Security Agreements:
Governments of energy-consuming countries negotiate resource security agreements with producers to ensure stable and reliable supplies of oil and gas. These agreements can involve investments in infrastructure development, technology transfer, and political cooperation.
Technology Development Partnerships:
Collaboration between countries, research institutions, and private companies is crucial for advancing technologies related to cleaner hydrocarbon extraction, carbon capture, gas utilization, and the development of alternative energy sources.
Complexities of International Relations
Despite the benefits of cooperation, international relations in the oil and gas industry face several challenges:
Geopolitical Tensions:
Political tensions between resource-rich and consuming countries can disrupt energy security and hinder collaboration. Geopolitical instability in key oil and gas producing regions can lead to supply disruptions and price volatility.
Non-State Actors:
The growing role of non-state actors, such as environmental groups and energy security think tanks, adds complexity to international relations in this sector. These actors can influence policy decisions and shape public opinion regarding resource development and energy security strategies.
Table 1
Increased International Relations Work in Oil and Gas
Factor Description Example
Energy Security Countries strive to diversify oil and gas supplies to avoid dependence on any single producer and mitigate the risk of supply disruptions. The European Union's efforts to find alternative gas suppliers following Russia's invasion of Ukraine.
Climate Change International cooperation is needed to address climate change while ensuring a stable energy transition. The creation of the International Energy Agency (IEA) to promote policies for a secure and sustainable energy future.
New Players The rise of new oil and gas producers like the United States with shale oil disrupts traditional power dynamics. The need for OPEC to adapt its strategies in response to the US becoming a major oil producer.
Global Energy Transition Collaboration is needed to develop new technologies and infrastructure for a low-carbon energy future. International partnerships to research and develop renewable energy sources.
Refference:
1. King, G. R., Leinauer, J., & Locke, C. D. (2019). Hydraulic fracturing 101: What you need to know. Journal of Petroleum Technology, 71(02).
2. Gharaei, S., & Torseter, O. (2012). Waterflooding in fractured reservoirs: Does it work? Energy & Fuels, 26(7).
3. Byrom, T. (2017). Digital twins: The future of oil and gas operations. Oilfield Review, 29(2), 44-50.
© Gafurova M., Muhammedova J., Oraznepesova M., 2024
УДК 55
Анналыев П.
Преподаватель МУНиГ им. Я. Какаева г. Ашхабад, Туркменистан Какабаев Я.
Преподаватель МУНиГ им. Я. Какаева г. Ашхабад, Туркменистан Ходжагулыев С.
Преподаватель МУНиГ им. Я. Какаева г. Ашхабад, Туркменистан Атаев Ю.
Преподаватель МУНиГ им. Я. Какаева г. Ашхабад, Туркменистан
ЗАЩИТА КОЛОННЫ СКВАЖИНЫ ОТ КОРРОЗИИ
Коррозия - это разрушение металлических элементов под воздействием окружающей среды. В условиях нефтегазодобычи она представляет собой серьезную проблему, которая может привести к:
Разрушению обсадной колонны скважины, что может привести к аварии и загрязнению окружающей среды.
Снижению дебита скважины из-за образования отложений и сужения проходного сечения труб.
Увеличению издержек на ремонт и обслуживание скважин.
Для защиты колонны скважины от коррозии используется комплекс мер, которые можно разделить на следующие группы:
1. Превентивные меры
Выбор материалов для изготовления обсадной колонны: использование коррозионностойких сталей, сплавов или полимерных труб.
Обработка поверхности труб: нанесение защитных покрытий, таких как ингибиторы коррозии, эпоксидные краски или цементное обмазывание.
Контроль качества цементирования: обеспечение герметичности зазоров между трубами и стенками скважины.
2. Активные методы защиты
Катодная защита: применение электрического тока для защиты металла от коррозии.
Ингибиторная защита: добавление в скважинную жидкость специальных веществ, которые замедляют процесс коррозии.
Протекторная защита: установка в скважине протекторов из более электроотрицательного металла, чем обсадная колонна.