Научная статья на тему 'HE KINETICS AND MECHANISM OF THE SELECTIVE OXIDATIVE DEHYDROGENATION REACTİON OF METHYLCYCLOPENTANE'

HE KINETICS AND MECHANISM OF THE SELECTIVE OXIDATIVE DEHYDROGENATION REACTİON OF METHYLCYCLOPENTANE Текст научной статьи по специальности «Химические науки»

CC BY
69
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
kinetics / oxidative dehydrogenation / methylcyclopentadiene-1 / 3 / кинетика / окислительное дегидрирование / метилциклопентадиен-1 / 3

Аннотация научной статьи по химическим наукам, автор научной работы — A.M. Aliyev, M.Y. Abbasov, M.G. Aliyeva, G.A. Alizade, R.Yu. Agayeva

The oxidative dehydrogenation of alicyclic diene hydrocarbons refers to scarcely studied heterogeneous catalytic reactions which proceed with the participation of oxygen. The dehydrogenation of methylcy-clopentane is an endothermic reaction. To improve the reaction kinetics, this research was to develop a structured catalyst by conductive metals (Cu, Zn, Co, Cr) support which could hold an adherent catalytic layer. The active phase was impregnated onto these support metals and the developed catalyst was tested for the dehydrogenation of methylcyclopentane. The catalyst preparation involved three main key steps which were support oxidative reaction, loading of active particles on the catalyst surface, preparation of an active catalyst layer on the surface finally bringing the catalyst into the active phase. Different types of catalyst activation and deactivation mechanisms stability have been studied in this investigation. The advantage of this works, the oxidative dehydrogenation of methylcyclopentane is that it occurs at the expense of oxygen in the air. The zeolite structure study helped identify the effect of the combination of catalysts, and adsorption of metals on clinoptilolite and dispersion on the selectivity of the catalyst parti-cles. Numerical values of the kinetic parameters were calculated.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

МЕХАНИЗМ И КИНЕТИКА РЕАКЦИИ СЕЛЕКТИВНОГО ОКИСЛИТЕЛЬНОГО ДЕГИДРИРОВАНИЯ МЕТИЛЦИКЛОПЕНТАНА

Окислительное дегидрирование алициклических диеновых углеводородов в присутствии кислорода является малоизученной гетерогенно-каталитической реакцией. Дегидрирование метилциклопентена эндотермическая реакция. Для изучения кинетики реакции, разработан структурированный катализатор с катионами металлов (Cu, Zn, Co, Cr), которые связаны с поверхностью катализатора. В активной фазе катализатора переходные металлы, были адсорбированы и протестированы реакцией дегидрирования метилциклопентена. Фаза приготовления катализатора охватывает три основных стадии, соответствующие реакциям окисления: нанесение активных частиц на поверхность катализатора, приготовление активного слоя катализатора на поверхности и, наконец, перевод катализатора в активную фазу. Изучена устойчивость активации и дезактивации механизмов различных типов катализаторов. Преимущество данной работы состоит в том, что окислительное дегидрирование метилциклопентена происходит за счет кислорода воздуха. Исследование структуры цеолита помогло определить комбинации катализаторов и адсорбцию металлов на клиноптилолите, а также селективность диспергирования частиц катализатора. Рассчитаны численные значения кинетических параметров.

Текст научной работы на тему «HE KINETICS AND MECHANISM OF THE SELECTIVE OXIDATIVE DEHYDROGENATION REACTİON OF METHYLCYCLOPENTANE»

ISSN 2522-1841 (Online) ISSN 0005-2531 (Print)

UDC 554.47:547.514.7

THE KINETICS AND MECHANISM OF THE SELECTIVE OXIDATIVE DEHYDROGENATION REACTiON OF METHYLCYCLOPENTANE

A.M.Aliyev, M.Y.Abbasov, M.G.Aliyeva, G.A.Alizade, R.Yu.Agayeva

M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan

[email protected]

Received 20.04.2021 Accepted 27.05.2021

The oxidative dehydrogenation of alicyclic diene hydrocarbons refers to scarcely studied heterogeneous catalytic reactions which proceed with the participation of oxygen. The dehydrogenation of methylcy-clopentane is an endothermic reaction. To improve the reaction kinetics, this research was to develop a structured catalyst by conductive metals (Cu, Zn, Co, Cr) support which could hold an adherent catalytic layer. The active phase was impregnated onto these support metals and the developed catalyst was tested for the dehydrogenation of methylcyclopentane. The catalyst preparation involved three main key steps which were support oxidative reaction, loading of active particles on the catalyst surface, preparation of an active catalyst layer on the surface finally bringing the catalyst into the active phase. Different types of catalyst activation and deactivation mechanisms stability have been studied in this investigation. The advantage of this works, the oxidative dehydrogenation of methylcyclopentane is that it occurs at the expense of oxygen in the air. The zeolite structure study helped identify the effect of the combination of catalysts, and adsorption of metals on clinoptilolite and dispersion on the selectivity of the catalyst particles. Numerical values of the kinetic parameters were calculated.

Keywords: kinetics, oxidative dehydrogenation, methylcyclopentadiene-1,3.

doi.org/10.32737/0005-2531-2021-3-12-20

Introduction

The alicyclic dienic hydrocarbons are the raw material for the synthesis of various classes of polyfunctional compounds. Functional derivatives of these compounds by reason of the high activity of a multiple bond are used in the synthesis of polymeric and composite materials for special purposes, physiologically active compounds, as well as the chiral synthons for the directed obtaining analogues of natural compounds and medicaments. The most widely studied reaction of catalytic dehydrogenation of naphthenes hydrocarbons in the oil field [1, 2]. It is known that this thermodynamically limited reaction proceeds under hard conditions lead to aromati-zation and resinification of significant part of the hydrocarbon fraction, as well as rapid coking and deactivation of the catalysts. This type of oxida-tive dehydrogenation of methylcyclopentan for obtaining of methylcyclopentadiene-1,3 refers to poorly studied heterogeneous catalytic reactions proceed with participation of oxygen. The using of molecular oxygen as an acceptor of hydrogen allows one to carry out the process at milder conditions and to prevent the above mentioned difficulties [3]. This invention relates to a novel catalyst and to the use of this catalyst in the cata-

lytic dehydrogenation of methylcyclopentane to produce methyl-1,3-cyclopentadiene. Throughout the specifications and claims of this application methylcyclopentadiene-1,3 is used generi-cally to encompass all positional isomers as determined by the position of the methyl group on the cyclopentadiene ring. Methylcyclopentadi-ene-1,3 is an extremely useful compound for preparation of intermediates synthetic resinous compositions [4]. In this case, the synthesis of highly active and selective zeolite-based catalyst for the selective oxidative dehydrogenation of methylcyclopentane to methylcyclopentadiene-1,3 is of great theoretical and practical importance. This investigation present the results of studies of oxidative dehydrogenation of methyl-cyclopentane with molecular oxygen in order to identify the conditions of selective formation of methylcyclopentadiene-1,3 in the presence of modified zeolite catalysts and kinetics results of the reaction.

Experimental part

Catalysts prepared by the ion-exchange method, using Azerbaijan natural zeolites clinoptilolite (crystallinity - 84.0%, X=8.68) modified by various cations, transition and non-transition elements (Zn, Cu, Co, Cr, Mn, Fe,

etc.). Zeolites NaY (SiO2/Al2O3, A=4.2), NaX (X=2.9), NaA (X=2.0) and mordenite (X=9.6). Modification of zeolites with metal cations was performed by treatment their initial forms in a solution of chloride salts of the corresponding cations. The catalysts prepared on the basis of clinoptilolite and mordenite were subjected to acid treatment before the ion exchange. Firstly the natural zeolites have been treated with 0.5 N HCl. Number of the cations incorporated into the zeolite was determined by ICP-MS Agilent 7700 and amounted to 0.1-2% by mass of the zeolite. Catalysts particles size 0.25-0.63 mm and purity of methylcyclopentane were 99.5% in this work. The reaction is carried out in a U-shaped flow reactor. The reactor is placed in a air electric oven with automatic temperature control. Feed of methylcyclopentane was carried out by a pump. Methylcyclopentane vapors and nitrogen mixed with oxygen in the mixer located in a thermostated oven and enter the reactor with the catalyst. Temperature stability is maintained in the oven with a contact thermometer. The temperature in the middle of the catalyst bed is measured with a thermocouple and recorded with the potentiometer. The reaction unit is directly connected to the analysis system through six-way valve allows the analysis of the reaction mixture to be without loss. The mixture exiting from the reactor gradually passes through the sample loop and is collected in cooled trap. The analyses of the product of the reactions were also performed by gas chromatography using GC "Agilent 7890" with "Agilent 5975" MS and capillary column HP-5MS (length-30 m).

Results and Discussion

Discovered of that, the conversion of me-thylcyclopentane over studied catalysts occurs in the following directions: oxidative dehydroge-nation; partial and deep oxidation. The yield of reaction products depend from the porous structure of the zeolite, its physico-chemical properties as well as the nature and concentration of cations incorporated in the zeolites and reaction conditions. Initially has been investigated catalytic activity of the initial zeolites in oxidative dehydro-genation of methylcyclopentane. The key differ-

ence between natural heulandite and clinop-tilolite is thermal stability. Clinoptilolite can also having alkali cations dominant, [(Na+K)>Ca] [5]. Clinoptilolite can be represented by typical oxide formula as: (Na^pA^^ SiO2-8 H2O. Unit cell contents of clinoptilolite can be represented as (Na, K)6 (Al6 Si30O72) 24 H2O. The unit cell of clinoptilolite is monoclinic and is usually characterized on the basis of 72 oxygen atoms («=36) and m=24 water molecules, with Na+, K+, Ca2+ and Mg2+ as the most common charge-balancing cations [6]. This is more likely due to the strong adsorption of methylcyclopen-tane on faujasite. In contrast to zeolites with large pores (NaX, NaY), narrow porous zeolites characterized with minor surface (8.0-20.0) m /g and small pore size (4.2-4.9) A promote the selective conversion of methylcyclopentane to me-thylcyclopentene.

Kinetic experiments were performed in a flow apparatus at atmospheric pressure in the temperature range (320 - 360)0C, space velocity 500 - 2000 h-1, the partial pressures of the reac-tants C6H12 P = 0.22-0.32 atm; O2 P = 0.140.17 atm. Runs performed at several feed rates and using granules of the catalyst Cu Zn Co Cr-clinoptilolite with of different sizes showed that external and internal mass transfer effects were negligible under the studied experimental conditions. The mechanism of oxidative dehydro-genation methylcyclopentane on above mentioned active centers may be presented as following stage scheme:

O2 + 2Z1 —— 2Z1O|l/2| O2 + 2Z2 ——• 2Z2O |l/2|

( ZlO+Z2O ) + C6Hi2 -( ZlO+Z2O ) C6H12 k

->( Z1O + Z2O) C6H

6H12

^ C6H8 + 2H2O + Z1 + Z2

C6H12 + O2 = C6H8 + 2H2O

The following expression can be written for rates of the stages:

/1 = *1©2P02 , / = k2©2PO2 , / = Wc6H12 ,

r4 = k404

In stationary conditions

r = r = r = r = r.

Here 0i, 02, 03, and 04 are fractions of catalyst surface; the sites with two near arranged adsorbed atom oxygen on different exchange cations and the sites with adsorbed molecules of methylcyclopentane.

0,

ko 0o

кл

01 =

I LR,

O,

02 =.

k3 PC

CH.-

k2 PO2

•V0", 0 + 0 + 0 + 0 — 1

^ C6H12-0+0 +

к

4

Ik^Pf,

kP

+

k3PC,

O,

k2 PO

X

x^/0"-1 — 0

Assuming

'2

k P

3 C6H12 _ Л ~k~—A '

к P

'Л3РСбН12

k1PO

+

к P

|k3 РСбН12 k2PO2 ;

5

0 — x2 , A — x, AX2 + Вх -1 — 0

We'll receive: - В + V52+4Ä

2 A

0 — л2 —

-В W В2 + 4 A

2A

Then the equation of rate of the formation methylcyclopentadiene appears as

Г Гп и k^Pr,

- В wВ2 + 4 A

2 A

(1)

r = г1 = к P

I /л и /Vo-Z. /-1 и

C6H8 3 C6H12

+

LP.

к2 Po

+

LP

LP

V

kiP

+

o9

к2 P),

к P

/Vo J. /-1 и

+ 4 3 C6H12

к P

/Vo J. /-1 и 2 3 C6H12

(2)

Stage scheme of oxidative dehydrogena- oxygen sites with atom oxygen and sites ad-tion of methylcyclopentane into methylcyclo- sorbed molecules of methylcyclopentane. pentene may be presented as:

O2 +2Z3 ■

Z3O + C6H12

Z3OC6H12 —

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

— 2Z3O|1|

— Z3OC6H12|1|

— СбНш + H2O + Z31

1 2

C6H12 + " O2 — C6H10 + H2O

The following expression can be written for rates of the stages:

r5 = £5e? p,, = ke p

CH,.

k7 07

In stationary conditions

Where 0,0,0 are fractions of catalyst surface; sites with the ability adsorb atom

0+0+0 —1

к P

0 — 6 C6H12 0

к

05 —

k6 PC6H12 06

k5 PO2

kPn

6 ^0+0 +

k-j

1

kP

6" CH

6H12

kP

V0 -1 — 0

^ O,

Assuming

krPrл

6 CÄ2. + 1 — с

k-J

kP

6 C6H12 — d, 0— x2

k5 PO,

— X

2

2

2

r — r — r — r

we'll obtain: cx2 + dx -1 = 0,

x =

d + V d2 + 4c 2c

г

e6 = x2 =

-d + 4 d2 + 4c

v

2c

Then equation of formation rate of ethyl-cyclopentene appears as:

-d + V d2 + 4c

Г ГСбНю P C6H12

kP

2c

(3)

r — Г1 —hp

V

kP

k5po

+

.V

kP

KPr

O,

+ 4

kP

6 C6H12 + 1

'2 У

v k7

k P

6 C6H12 + 1

v k7

У

(4)

Kinetic regularities of the reaction of oxidative dehydrogenation of methylcyclopentane over metal-clinoptilolite catalyst CL-CuCrCoZn are given in Table 1. Kinetic tests were performed in the range of temperature, (320-360)0C, at a space velocity of (500-2000) h-1, partial pressure of reagents; PC H = 0.2196 - 0.3199 atm,

PO =0.1438-0.1659 atm and G = 1.78g, ^ cat

V . = 2sm3. cat

Assuming that carbon dioxide is formed as a results of interaction of adsorbed molecules, methylcyclopentane, methylcylopen-tene and metylcyclopentadiene with adsorbed molecules of oxygen it can be written the following kinetic equations corresponding to these mechanisms.

rCO ='

k K1P1K6 P2

rCO =

(1 + K1P1 +4k2P2 + K3P3 + K4 P4 + K5 P5 + K6 P2 )

_k9 K3P3K6 P2_

(1+K1P+4EF2 + K3P3+K4 P4+K5 P5+K6 P2 )2

(5)

(6)

rCO. ="

k10 K4 P4 K6 P2

(1+K1P1+VKP+K3 P3+K4 P4 + K5 P5+K6 P2 )

(7)

Гс6Н10 Гс6Н10 rCO2

C6H8 = C6H8 CO2

_ 1 2 3

rCO2 = rCO2 + rCO2 + rCO2

(8)

(9)

(10)

2

2

6 12

On

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

>

n m

>

o X

w

o >

r o

>

r

t$ OJ

to o to

Table 1. The results of kinetic runs

Partial pressure of reagents, atm Moles of substance, mol/hr Mole of substance, mol/hr Mole of substance, mol/hr Space velocity, v, h"1 Temperature, T, °C Conversion, X, % Yields of products of reaction, A, %

pr H12 Po2 n°o2 <2 AC5H8 ¿2C5H6 A3 C6H10 CöHg A5 C6HIO ¿6C6H6 a7co2

0.2765 0.1533 0.0178 0.00987 0.0367 500 300 31.5 - - 8.1 12.8 5.8 0.7 4.1

0.2675 0.1533 0.0178 0.00987 0.0367 500 320 34.9 0.3 - 9.0 14.6 6.0 - 5.0

0.2675 0.1533 0.0178 0.00987 0.0367 500 340 42.7 0.9 0.4 10.5 15.7 6.3 4.2 4.7

0.2765 0.1533 0.0178 0.00987 0.0367 500 360 48.1 1.4 0.6 13.7 17.5 7.4 1.9 5.6

0.3199 0.1438 0.0356 0.016 0.0597 1000 300 47.5 2.7 2.4 12.4 18.5 5.4 2.4 3.7

0.3199 0.1438 0.0356 0.016 0.0597 1000 320 50.8 3.1 2.7 13.9 18.8 5.9 3.4 3.0

0.3199 0.1438 0.0356 0.016 0.0597 1000 340 53.5 4.1 1.6 15.9 19.4 5.9 3.7 2.9

0.3199 0.1438 0.0356 0.016 0.0597 1000 360 58 2.4 3.8 16.3 22.7 6.3 3.0 3.5

0.2836 0.1512 0.045 0.024 0.0897 1500 300 54.8 3.8 2.6 12 25.9 2.7 3.5 4.3

0.2836 0.1512 0.045 0.024 0.0897 1500 320 60.5 5.2 3.9 14.4 27.2 4.5 2.6 2.7

0.2836 0.1512 0.045 0.024 0.0897 1500 340 70.6 3.1 4.9 15.8 36.0 2.3 4.0 4.5

0.2836 0.1512 0.045 0.024 0.0897 1500 360 74.6 1.5 3.6 17.0 42.3 4.3 2.0 3.9

0.2196 0.1659 0.045 0.034 0.126 2000 300 40.9 2.7 4.2 10.7 14.7 3.3 1.9 3.4

0.2196 0.1659 0.045 0.034 0.126 2000 320 43.7 1.9 2.7 13.2 15.9 4.6 2.7 2.7

0.2196 0.1659 0.045 0.034 0.126 2000 340 50.7 2.9 1.5 15.5 17.0 4.9 4.1 4.8

0.2196 0.1659 0.045 0.034 0.126 2000 360 58.4 3.4 2.1 15.8 20.4 5.5 4.9 6.3

> r

HH

m ft

Equation (8)—(10) make up the kinetic model of the considered reaction.

We can show the rate of formation of carbon dioxide from the cyclopentene, cyc-lopentadiene, cyclohexene, benzene, methyl-cyclopentene, methylcyclopentadiene and summer of methylcyclopentane, methylcyclopen-tene, methylcyclopentadiene, accordingly can be represented by the following differential equations:

dA1

j Gcat d 0

WC6Hi2

— k14 P1 ,

dA

5

j Gcat d 0

nC6HX2

dA

2

j Gcat d 0

nC6HX2

— k13 P6

— k12 P1 ,

dAs

^ Gcat

— k11P8

n

C6H12

(11)

- kP G - k6PC6H12

cat

0

C6H12

n

( k6PC6Ht2 + ^

k9 K3P3 K6 P

(1 + K1P1 +4K2P2 + K3P3 + K4P4 + K5 P5 + KP )

(12)

2

dA4

d Gcat

— LPc

C6H12

CH-

6H12

k10 K4 P4 K6 P2

(1+K1P1+VKP+K3P3+K4 P4+K5P5+K6 p2 )

(13)

2

d k8K1P1K 6P 2

"C6H12

k9K4P4K6P2 , k10K3P3K6P2 (14)

(1+K1P1 +K3P3 + K4P4 + K5P5 + K6P2 )2 (1 + K1P1 +M + K3P3 + K4P4 + K5P5 + VP^

here Ki - the adsorption equilibrium constant

' Q ^ i E\

K — K

0

V J

tion rate constant.

k = k0 • e

RT

ki - reac-

The suitable stoichiometric equations of formation of the reaction products are,

1. C6Hi2^O2=C6Hio+H2Ü

2. C6Hio+1O2=C6H8+H2O

3. C6H8+1Ü2=C6H6+H2Ü

3. C6Hi2+9O2=6CO2+6H2O

4. C6Hio+8.5O2=6CO2+5H2O

5. C6H8+8O2=6CO2+4H2O

By using these equations, the reaction yield and the initial molar amounts of the re-actants we can determine the current velocity in the molar flow of methylcyclopentane, me-thylcyclopentene, methylcyclopentadiene, benzene, carbon dioxide, oxygen and water accordingly by the following equations:

W^ tt — Wc u

C6H12 C6H12

CH

5H8

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

— An

0

1WC6H12 0

- ( An /100

0 - + AWr tt _ + Anr

, + A4WC6H12 +

5wC6H12 + A6 WC6H12

+ A7 wC6H12)/100

nC5H6 = A2 WC6H12/100

CH

6H10

— AW

3 C6H12 0

/100

WC6H8 = A^W100

W

C6H10

= An

0

C6H12

/100

W

C6H6 A6"(C6H12 0

n^ ^ — AW0 xs /100

CO

2

— 6 An,

O

— «O9 - (1 Aw€

7 nC6H12 1

/100

1

HO

— ( An

2 "2 0

H„ +2 A4WC6H12 + 85A7nC6H12)/100

6H12 0

+ An

+ An

0

+ A n

0

€6^2 + A2"C6H!2 + A3"C6H!2 + ^'^H^

+ A5«C6H12 + A,«€6H12 + 5A7«C6H12 ) /100

6H12

WN2 — WN2

(15)

The partial pressure of the reactants expressed by the equation:

P —

niP

Pn

(16)

reaction constants, activation energies and heats of adsorption conducted by methods of "rolling admission" and Pauelusing software system "Search" [7], where the objective function has the form:

Ai, A2, A3, A4, A5, A6, A7 - yields of cy-clopentene, cyclopentadiene, methylcyclopen-tene, methylcyclopentadiene, cyclohexene, benzene and carbon dioxide respectively. P1, P2, P3, P4 ,P5, P6, P7, P8 P9 - partial pressure of methylcyclopentane, oxygen, methylcyclopen-tene, methylcyclopentadiene, benzene, cyclo-pentene, cyclopentadiene, cyclohexene and water accordingly.

Equations (4) and (6), (8) (10) form the kinetic model of the process.

A kinetic model of the reaction subjected to statistical analysis on the basis of kinetic data. Calculation of pre-exponential factors of the

m w f Aexp - ACal°

F — min "VPi —-—

p p 1 j

Jexp Acalc ji ' ji

(17)

the experimental and calculated values of outputs i-th component in the j-experiment, m - the number of experiments, n -the number of components.

Numerical values of the constants of a kinetic model presented in the Table 2. Calculations showed that the relative error of experimental and calculated data did not exceed 10%-15%.

0

Table 2. The kinetic parameters of kinetic models

The kinetic model of reaction oxidative dehydrogenation of methylcyclopentane

lnfc0( lntf^) Ei(Qi), kcal / mole

ln k0 30.34 Ei 69.98

Infc? 13.81 E2 93.06

ln 21.68 E3 51.95

ln 31.22 E4 30.11

lnfc0 15.68 E5 32.14

lnfc° 27.14 E6 52.40

29.27 E7 37.93

lnfc0 -17.23 Es 27.34

ln fcJ0 -15.82 E9 89.80

lnfcio 69.78 E10 30.04

ln^0, 10.78 E11 15.02

94.12 E12 15.17

ln fc®3 14.40 E13 19.87

lnfc104 82.98 El4 15.00

lntf,0 57.41 Qi 98.19

ln^20 60.38 Q2 37.10

ln^30 41.89 Q3 47.50

lntf40 12.46 Q4 90.32

ln^50 50.35 Q5 28.54

ln^60 23.36 Qi 81.11

References

1. Pines H., Csicery S.M. Dehydrogenation, Dehyd-rocyclization and Isomerization of C5-C6 Hydrocarbons over Chromia-Alumina Catalysts. J. American Chem. Soc. 1962. V. 84. P. 292. http:// dx.doi.org/10.1021/ja00861a032

2. Agadadash M.Aliyev, Zumrud A.Shabanova, Ulvi M. Najaf-Guliyev, Irada G. Melikova. Selection of Active Modified Zeolite Catalyst and Kinetics of the Reaction of Selective Oxidative Dehydrogenation of Cyclohexane to Cyclohexadiene 1,3. Mo-dern Research in Catalysis. 2015. V. 4. P. 8796. http://dx.doi.org/10.4236/mrc.2015.44011

3. Tagiyev D.B., Minachev H.M. Catalytic Properties of Zeolites in Oxidation Reaction. Uspekhi khimii. 1981. V. 50. P. 1929-1259.

4. Process and catalyst for the preparation of methyl-1,3-cyclopentadiene. Clarence L. Dulaney, Texas City, Tex., Raymond A.Franz, Kirkwood, Mio, assignors to Monsanto Company, St. Louis, Mo., a corporation of Delaware No Drawing. Filed Mar. 8, 1962. Ser. No. 178. Claims. P. 260-666.

5. Zhao D., Cleare K., Oliver C., Ingram C., Cook D., Szostak R., Kevan L. "Characteristics of the synthetic heulandite-clinoptilolite family of zeolites", Microporous and Mesoporous Materials. 1998. V. 21. P. 371-379.

6. Gottardi G., Galli E. Natural Zeolites. SpringerVerlag, Berlin, 1985.

7. Shakhtakhtinsky T.N., Bakhmanov M.F., Kelba-liyev G.N. Methods of Optimization of Processes of Chemical Engineering with the Computer Programs. Baku: Elm, 1985. P. 260.

METiLTSiKLOPENTANIN SELEKTiV OKSiDLO§DiRiCi DEfflDROGENLO§MOSi REAKSiYASININ

MEXANiZiMi VO KiNETiKASI

A.M.Oliyev, M.Y.Abbasov, M.Q.Oliyeva, G.O.Olizada, R.Y.Agayeva

Alitsiklik dien karbohidrogenlarinin oksigenin i§tiraki ila gedan oksidla§dirici dehidrogenla§masi az öyranilmiij heterogen katalitik reaksiyalara aiddir. Metilsiklopentanm dehidrogenla§masi yüksak daracada gedan endotermik reaksiyadir. Reaksiyanin kinetikasini ügün, bu tadqiqatda maqsad alaqali bir katalitik tabaqa saxlaya bilan kegirici metallarin (Cu, Zn, Co, Cr) kömayi ila strukturla§dinlmi§ bir katalizator hazirlamaq idi. Katalizatorun aktiv fazasinda kegid metallari adsorbsiya edilarak metiltsiklopentanin deMirogenla§masi reaksiyasinda test edildi. Katalizatorun hazirlanmasi marhalasi oksidla§ma reaksiyasinin aparilmasi ügün uygun olan üg asas marhalani ahata edir: aktiv hissaciklarin katalizator sathina yüklanmasi, sathda aktiv kataliaztor tabaqasinin hazirlanmsi va nahayat katalizatorun aktiv fazaya gatirilmasi. Bu ara§dirmada müxtalif növ katalizatorlarin aktivasiyasi va deaktivasiyasi mexanizmlarinin stabilliyi öyranilmi§dir Bu i§in üstünlüyü metiltsiklopentanin oksidla§dirici dehidrogenla§masinin havanin oksigeni

hesabina ba§ vermasidir. Seolitin qurulu§unun öyranilmasi katalizator kombinasiyalannin müayyan etmaya va metallann klinoptilolit üzarinda adsorbsiyasina va katalizator hissaciklarinin dispers segiciliyina kömaklik göstardi. Kinetik parametrlarin adadi qiymatlari hesablandi.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Agar sözlar: kinetika, oksidh§dirici dehidrogenh§m3, metilsiklopentadien-1,3.

МЕХАНИЗМ И КИНЕТИКА РЕАКЦИИ СЕЛЕКТИВНОГО ОКИСЛИТЕЛЬНОГО ДЕГИДРИРОВАНИЯ

МЕТИЛЦИКЛОПЕНТАНА

A.M.Алиев, М.Я.Аббасов, М.К.Алиева, Г.А.Ализаде, Р.Ю.Агаева

Окислительное дегидрирование алициклических диеновых углеводородов в присутствии кислорода является малоизученной гетерогенно-каталитической реакцией. Дегидрирование метилциклопентена - эндотермическая реакция. Для изучения кинетики реакции, разработан структурированный катализатор с катионами металлов (Cu, Zn, Co, Cr), которые связаны с поверхностью катализатора. В активной фазе катализатора переходные металлы, были адсорбированы и протестированы реакцией дегидрирования метилциклопентена. Фаза приготовления катализатора охватывает три основных стадии, соответствующие реакциям окисления: нанесение активных частиц на поверхность катализатора, приготовление активного слоя катализатора на поверхности и, наконец, перевод катализатора в активную фазу. Изучена устойчивость активации и дезактивации механизмов различных типов катализаторов. Преимущество данной работы состоит в том, что окислительное дегидрирование метилциклопентена происходит за счет кислорода воздуха. Исследование структуры цеолита помогло определить комбинации катализаторов и адсорбцию металлов на клиноптилолите, а также селективность диспергирования частиц катализатора. Рассчитаны численные значения кинетических параметров.

Ключевые слова: кинетика, окислительное дегидрирование, метилциклопентадиен-1,3.

i Надоели баннеры? Вы всегда можете отключить рекламу.