Научная статья на тему 'Green energy systems for powering electric vehicles considering telecommunication system with case study of Pakistan'

Green energy systems for powering electric vehicles considering telecommunication system with case study of Pakistan Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
12
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
electric vehicle charging stations / base transceiver stations / battery storage system / technical / economic and environmental assessment / renewable framework / зарядные станции электромобилей / базовые приемопередатчики / накопители энергии / технико-экономическая и экологическая оценка / возобновляемые источники энергии

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Muhammad Bilal Ali, Syed Ali Abbas Kazmi

The objective is to analyze the sustainability and efficiency of Pakistan’s telecommunication sector by developing a framework for base transceiver stations integrating renewable energy and charging stations. Various renewable energy sources such as solar, wind, biomass and hydropower were considered as the object of research. The following methodological steps were implemented in this work: site analysis; determination of optimal sizing of plants, energy storage systems and electric vehicle charging stations; cost-benefit analysis methods; greenhouse gas emissions estimation; and system design methods for integrating selected renewable energy sources and energy storage solutions, taking into account the operational requirements of the base transceiver stations. It is found that switching to hybrid renewable energy systems can significantly reduce dependence on diesel generators. It is shown that operating costs can be reduced by more than 80% compared to conventional diesel-fueled systems. Also, the introduction of hybrid renewable energy sources can lead to significant reductions in CO2 emissions. The integration of battery storage systems has been shown to improve the reliability of energy supply by ensuring uninterrupted operation during periods of high demand and blackouts. The proposed structure scheme for base transceiver stations is designed to accommodate future growth in the share of electric vehicles and technological advancements in renewable energy and electric vehicle charging. By prioritizing the integration of renewable technologies along with charging station infrastructure, telecom service providers in Pakistan can reduce their carbon footprint and operational costs. This approach not only addresses the unpredictability of the electricity grid, especially in rural areas, but also positions the telecoms sector as an active participant in global efforts to combat climate change

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Зелёные энергетические системы для электромобилей с учётом телекоммуникационной системы на примере Пакистана

Цель – анализ устойчивости и эффективности телекоммуникационного сектора Пакистана путем разработки структуры для базовых приемопередающих станций, объединяющих возобновляемые источники энергии и зарядные станции. В качестве объекта исследований рассматривались различные возобновляемые источники энергии, такие как солнце, ветер, биомасса и гидроэнергия. В работе реализованы следующие методологические этапы: анализ местности; определение оптимальных размеров установок, систем накопителей энергии и станций зарядки электромобилей; методы анализа затрат и выгод; оценка выбросов парниковых газов; методы проектирования системы для интеграции выбранных возобновляемых источников энергии и решений по хранению энергии с учетом эксплуатационных требований базовых приемопередающих станций. Установлено, что переход на гибридные системы возобновляемой энергии может значительно снизить зависимость от дизельных генераторов. Показано, что эксплуатационные расходы могут быть снижены более чем на 80% по сравнению с традиционными системами, работающими на дизельном топливе. Также внедрение гибридных возобновляемых источников энергии может привести к значительному сокращению выбросов CO2. Показано, что интеграция систем хранения аккумуляторов повышает надежность энергоснабжения, обеспечивая бесперебойную работу в периоды высокого спроса и отключения электроэнергии. Предложенная схема структуры для базовых приемопередающих станций разработана с учетом будущего роста доли электротранспорта и технологических достижений в области возобновляемых источников энергии и зарядки электромобилей. Отдавая предпочтение интеграции возобновляемых технологий наряду с инфраструктурой зарядных станций, поставщики телекоммуникационных услуг в Пакистане могут сократить углеродный след и эксплуатационные расходы. Такой подход не только решает проблемы, связанные с непредсказуемостью электросетей, особенно в сельских регионах, но и позиционирует телекоммуникационный сектор как активного участника глобальных усилий по борьбе с изменением климата

Текст научной работы на тему «Green energy systems for powering electric vehicles considering telecommunication system with case study of Pakistan»

POWER ENGINEERING

Original article EDN: GGTPIU

DOI: 10.21285/1814-3520-2024-4-534-549

Green energy systems for powering electric vehicles considering telecommunication system with case study of Pakistan

Muhammad Bilal Ali^, Syed AM Abbas Kazmi2

12National University of Sciences and Technology, Islamabad, Pakistan

Abstract. The objective is to analyze the sustainability and efficiency of Pakistan's telecommunication sector by developing a framework for base transceiver stations integrating renewable energy and charging stations. Various renewable energy sources such as solar, wind, biomass and hydropower were considered as the object of research. The following methodological steps were implemented in this work: site analysis; determination of optimal sizing of plants, energy storage systems and electric vehicle charging stations; cost-benefit analysis methods; greenhouse gas emissions estimation; and system design methods for integrating selected renewable energy sources and energy storage solutions, taking into account the operational requirements of the base transceiver stations. It is found that switching to hybrid renewable energy systems can significantly reduce dependence on diesel generators. It is shown that operating costs can be reduced by more than 80% compared to conventional diesel-fueled systems. Also, the introduction of hybrid renewable energy sources can lead to significant reductions in CO2 emissions. The integration of battery storage systems has been shown to improve the reliability of energy supply by ensuring uninterrupted operation during periods of high demand and blackouts. The proposed structure scheme for base transceiver stations is designed to accommodate future growth in the share of electric vehicles and technological advancements in renewable energy and electric vehicle charging. By prioritizing the integration of renewable technologies along with charging station infrastructure, telecom service providers in Pakistan can reduce their carbon footprint and operational costs. This approach not only addresses the unpredictability of the electricity grid, especially in rural areas, but also positions the telecoms sector as an active participant in global efforts to combat climate change.

Keywords: electric vehicle charging stations, base transceiver stations, battery storage system, technical, economic and environmental assessment, renewable framework

For citation: Bilal Ali M., Abbas Kazmi S.A. Green energy systems for powering electric vehicles considering telecommunication system with case study of Pakistan. iPolytech Journal. 2024;28(4):534-549. https://doi.org/ 10.21285/1814-3520-2024-4-534-549. EDN: GGTPIU.

ЭНЕРГЕТИКА

Научная статья УДК 621.31

Зелёные энергетические системы для электромобилей с учётом телекоммуникационной системы на примере Пакистана

Мухаммед БилалАли1 , Сайед Али Аббас Казми2

12Национальный университет наук и технологий, Исламабад, Пакистан

Резюме. Цель - анализ устойчивости и эффективности телекоммуникационного сектора Пакистана путем разработки структуры для базовых приемопередающих станций, объединяющих возобновляемые источники энергии и зарядные станции. В качестве объекта исследований рассматривались различные возобновляемые источники энергии, такие как солнце, ветер, биомасса и гидроэнергия. В работе реализованы следующие методологические этапы: анализ местности; определение оптимальных размеров установок, систем накопителей энергии и станций зарядки электромобилей; методы анализа затрат и выгод; оценка выбросов парниковых газов; методы проектирования системы для интеграции выбранных возобновляемых источников энергии и решений по хранению энергии с учетом эксплуатационных требований базовых приемопередающих станций. Установлено, что переход на гибридные системы возобновляемой энергии может значительно снизить зависимость от дизельных генераторов. Показано, что эксплуатационные расходы могут быть снижены более чем на 80% по сравнению с традиционными системами, работающими на дизельном топливе. Также внедрение гибридных возобновляемых источников энергии может привести к значительному сокращению выбросов CO2. Показано,

iPolytech Journal

2024;28(4):534-549

© Bilal Ali M., Abbas Kazmi S.A., 2024 534 _

что интеграция систем хранения аккумуляторов повышает надежность энергоснабжения, обеспечивая бесперебойную работу в периоды высокого спроса и отключения электроэнергии. Предложенная схема структуры для базовых приемопередающих станций разработана с учетом будущего роста доли электротранспорта и технологических достижений в области возобновляемых источников энергии и зарядки электромобилей. Отдавая предпочтение интеграции возобновляемых технологий наряду с инфраструктурой зарядных станций, поставщики телекоммуникационных услуг в Пакистане могут сократить углеродный след и эксплуатационные расходы. Такой подход не только решает проблемы, связанные с непредсказуемостью электросетей, особенно в сельских регионах, но и позиционирует телекоммуникационный сектор как активного участника глобальных усилий по борьбе с изменением климата.

Ключевые слова: зарядные станции электромобилей, базовые приемопередатчики, накопители энергии, технико-экономическая и экологическая оценка, возобновляемые источники энергии

Для цитирования: Билал Али Мухаммед, Аббас Казми Сайед Али. Зелёные энергетические системы для электромобилей с учётом телекоммуникационной системы на примере Пакистана. iPolytech Journal. 2024. Т. 28. № 4. (In Eng.). С. 534-549. https://doi.org/10.21285/1814-3520-2024-4-534-549. EDN: GGTPIU.

INTRODUCTION

A key element of economic growth and development is electricity. Consequently, a nation's ability to use energy is a must for its development. The telecom industry needs electricity to deliver reliable services to potential customers. The significant increase in the use of wireless communication networks in recent years is supported by a number of indicators, including the COVID-19 pandemic. Since many businesses and organizations now want their employees to work from home or finish their coursework online, wireless communication is more crucial than ever in the modern world. Man-made greenhouse gas emissions need to be decreased in light of the growing body of evidence demonstrating the effects of climate change on a global scale [1].

Cellular network operators must construct more telecommunication towers to meet the growing demand for telecom services in order to improve transmission and provide extensive coverage [2]. In rural areas with unpredictable grid electricity, telecom companies have challenges. Diesel generators (DG) are required when demand is high, increasing CO2 (GHG) emissions and exacerbating the effects of global warming. Renewable energy sources like solar, wind, biomass, hydro, and tidal are essential for driving telecom towers [2]. Diesel oil accounts for over 80% of energy costs for off-grid tower locations, making it the main expense. Effective design, upkeep, and technical development are crucial for the highest return on investment, accounting for factors such as emissions, energy efficiency, and operational scenarios [3].

Two tactics to assist reduce global warming include promoting energy-efficient devic-

es and raising consciousness of the consequence of reducing power consumption in hometowns and the telecom industry. Numerous scholars are trying to find solutions to these problems in different ways. Promoting renewable energy resources is the most reliable, cost-effective, environmentally pleasant, and well-liked alternate strategy. In an attempt to improve long-term energy supply systems, a lot of emphasis has been paid to the development of different renewable energy sources. Hybrid renewable energy sources (HRES) are dependable, carbon dioxide-free systems that successfully lessen dependency on a single renewable resource in areas with limited natural resources [4]. Integrating renewable energy sources is an emission-free method of producing energy that supports a district's geography and functions as a dependable prospective energy source for remote generating applications, claim [5, 6]. Large-scale wind, solar, and residential PV installations are all comprised in the renewable energy capacity shown. The production collects extra power from the grid throughout the day and releases it at night since most residential PV systems are on-grid systems. HRES can be operated individually for each household or in microgrids (MGs), that link many homes to create a power grid, in remote areas wherever grid extension is not practical [7-9]. The recent literature is shown in Table 1.

Interest in HRES has increased as a result of the fast-increasing demand for energy, environmental concerns, the depletion of fossil resources, fluctuating energy prices, and the need to power off-grid equipment. However, cultural, economic, environmental, and technical factors need to be taken

iPolytech Journal

Table 1. Recent works on technical, economic and environmental assessment Таблица 1. Последние работы по технико-экономической и экологической оценке

No. Location BTS sites Method Technical characteristic components Objective functions and explicitly considered variables Load type

PV WE DG EV BA LCOE IRR ROI SA

1 Australia [10] X HOMER ✓ ✓ ✓ X ✓ ✓ ✓ X ✓ IL

2 Cameroon [11] X HOMER ✓ ✓ ✓ X X ✓ ✓ X X DOMS

3 Iran [12] X IGOA ✓ ✓ X X ✓ ✓ X X ✓ COM

4 India [13] X HOMER ✓ ✓ ✓ X ✓ ✓ ✓ X ✓ DOM

5 Nigeriya [14] X HOMER ✓ ✓ X X ✓ ✓ X X ✓ DOM

6 India [15] X HOMER ✓ ✓ X X ✓ ✓ X X ✓ AGR

7 India [16] X HOMER ✓ ✓ ✓ X ✓ ✓ ✓ X ✓ RSD

8 Pakistan [17] X HOMER ✓ ✓ X X ✓ ✓ X X ✓ COM

9 Bangladesh [18] X HOMER ✓ ✓ ✓ X ✓ ✓ ✓ X ✓ RSD

10 India [19] X HOMER ✓ X X X ✓ X X X ✓ RSD

11 Tunisia [20] X HOMER ✓ ✓ X X ✓ ✓ X X ✓ COM

12 Saudi Arabia [21] X HS, PSO ✓ ✓ ✓ X ✓ ✓ ✓ X ✓ DOM

13 Egypt [22] X HOMER ✓ ✓ X X X ✓ X X X COM

14 India [23] X HOMER ✓ X X X ✓ X X X ✓ COM

15 China [24] X HOMER X ✓ ✓ X ✓ ✓ ✓ ✓ ✓ IND

16 Thailand [25] X HOMER ✓ X ✓ X ✓ X ✓ ✓ ✓ IL

17 Iraq [26] X HOMER ✓ X X X ✓ X X ✓ ✓ RSD

18 Europe [27] X GA, PSO ✓ ✓ X X ✓ ✓ X X ✓ DOM

19 Africa [28] X HOMER ✓ X ✓ X ✓ X ✓ ✓ ✓ DOM

20 India [29] X HOMER ✓ X X X ✓ X X ✓ ✓ DOM

21 South Korea [30] X HOMER ✓ X ✓ X ✓ X ✓ ✓ ✓ COM

22 Saudi Arabia [31] X HOMER ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ IND

23 China [32] X HOMER ✓ ✓ X X ✓ ✓ X ✓ ✓ IL

24 India [33] X GA, PSO ✓ ✓ ✓ X ✓ ✓ ✓ X ✓ AGR

25 Pakistan [34] X HOMER ✓ ✓ X X ✓ ✓ X ✓ ✓ DOM

26 Turkey [35] X HOMER ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ RSD

27 Saudi Arabia [36] X HOMER ✓ ✓ X X X ✓ X ✓ X COM

28 Bangladesh [37] X HOMER ✓ X ✓ X ✓ X ✓ ✓ ✓ DOM

29 Northeast India [38] X HOMER ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ DOM

30 South Korea [39] X HOMER ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ COM

31 Southern Turkey [40] X HOMER ✓ X ✓ X ✓ X ✓ ✓ ✓ RSD

32 Saudi Arabia [41] X HOMER ✓ ✓ X X ✓ ✓ X ✓ ✓ DOM

33 Pakistan [42] X HOMER ✓ X X X ✓ X X ✓ ✓ AGR

34 India [43] X HOMER ✓ X X X X X X X X DOM

35 Namibia [44] X HOMER ✓ X ✓ X ✓ X ✓ ✓ ✓ RSD

36 East Malaysia [45] X HOMER ✓ X X X ✓ X X ✓ ✓ DOM

37 Colombia [46] X HOMER ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ DOM

38 Yamen [47] X HOMER ✓ ✓ ✓ X X ✓ ✓ ✓ X DOM

39 Malaysia [48] X HOMER ✓ X ✓ X ✓ X ✓ ✓ ✓ DOM

40 Iran [49] X HOMER ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ IND

41 Chile [50] X HOMER X ✓ X X X ✓ X ✓ X RSD

42 Saudi Arabia [51] X PSO ✓ ✓ X X ✓ ✓ X X ✓ DOM

43 Australia [52] X PSO ✓ ✓ X X X ✓ X X X DOM

44 Proposed Study (Pakistan) ✓ HOMER ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ TELEC

Note: SA - Sensitivity analysis, PV - Photo-voltaic, DG - Diesel generator, EV - Electric vehicle charging station, IRR - Internal rate of return, IL - Island load, DOM - Domestic, COM - Commercial, AGR - Agricultural, RSD -Residential, IND - Industrial; TELEC - Telecom base transceiver station (BTS) load, WE - Wind energy, BA - Battery, LCOE - Levelized cost of energy.

into account for an HRES design to be really sustainable. Creating a successful HRES dispatch plan also requires comparing various dispatch strategies in terms of technological, economical, ecological, and social concerns. In addition to reducing stakeholder costs associated with managing load demand, this initiative seeks to improve social standing and reduce environmental degradation. The authors were motivated to conduct additional study and write a paper on the topic by the hybrid renewable energy system's integrated techno-economic-environmental-socio-tech-nical design with an appropriate dispatch strategy for telecommunication demands. The techno-economic-environmental analysis of integrating renewable resources (solar, wind, biomass, and hydro) with electric vehicle charging stations and battery storage systems with base transceiver stations in Pakistan's telecom industry forms the basis of this proposed study's detailed review.

OVERVIEW OF ASSESSMENT METHOD

The details assessment method is explained below.

Step 1: Optimal sizing of HRES system:

- design components of proposed hybrid BTS system;

- simulation computer tools required to optimize renewable resources.

Step 2: Results and Discussion:

- optimization outcomes of standalone and On-Grid EV's based hybrid BTS sites;

- optimal renewable resources and energy storage to optimized HRE Plants.

Step 3: Conclusion.

OPTIMZAL SIZING OF HRES SYSTEM

Some of the ideal size issues linked with HRES systems include approximating the system parmeters and components with the highest capacity while also taking feasibility and reliability restrictions into consideration. It is observed that this research is predicat-

ed on the implementation of HRES grids and only optimal generating and storage unit sizing is taken into account through the use of optimization techniques [53, 54]. In this scenario, governments often plan and build HRES networks. As a result, the distribution of grid installation on HRES systems is not sufficiently well-documented for cost analysis. Additionally, producing and storage facilities are usually located near rural regions, therefore the HRES grid is far less expensive than traditional power networks [55].

Design components of proposed hybrid BTS system. In this proposed study, multiple cites of BTS are taken from all over the Pakistan including north, south and central region. Therefore, the existing BTS have only diesel generator and battery bank. While the proposed BTS have renewable resources (wind, solar, biomass and hydro) with electric vehicle charging stations and battery storage system. The comparison of components of existing and proposed BTS sites are shown in Table 2. The existing and proposed BTS infrastructure is shown in Fig. 1.

The detail components of HBTS system are shown in Fig. 2. The advantages and disadvantages of renewable resources are shown in Table 3.

Simulation computer tools required to optimize renewable resources. The challenges confronting the energy industry are complex and interrelated. Energy modeling methods help solve problems in the energy business. Many tools with a wide variety of uses, ranges, and scopes are available. The correct tool can accomplish the intended energy aims, even though no energy tool can address every problem facing the sector. A mechanism that may combine all renewable resources in a more long-term way and have techno-economic-environmental analysis at least at the national level was required for this research project. The specific features of a number of tools are listed below in Table 4.

Table 2. Comparison of existing and proposed BTS system components

Таблица 2. Сравнение компонентов существующей и предлагаемой системы BTS

Diesel generator Battery storage system On-grid Solar Wind Biomass Hydro EV charging station

Existing System ✓ ✓ X X X X X X

Proposed System ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 1. Proposed BTS system infrastructure

Рис. 1. Инфраструктура предлагаемой системы BTS

• DR (9.75 *1 ■ Ч«пот1Ы» Fraction

Commercial СИ Comport, «« Tc^pocar^ D,«.l Ну<МВ:отаиСад,л| ^P^™"' -IBISSW ■ Cap««» Shora*

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Raduson Sp«a сом Cott Co« CM -N-2Synn 'teitMr

1 i I I I I I I 11 1 111

Load Type Emission Data Technical Data Energy Resources Emission Details System Details System Constraints

1 1 i

INPUT PARAMETERS

Charging Cycle (CC)

► CONTROL STRATEGY

Load Following (LF)

1

Components of hybrid BTS system

.............J-

T

Fuel consumed 1. Diesel Generator

Renewable Energy Resources

1. Solar Energy

2. Wind Energy

3. Hydro Energy

4. Biomass Energy

Storage System 1. Battery storage system

Electric vehicle charging stations

1. Level 2 Office

2. Managed Office

3. Highway Charger

4. Overnight Charger

5. Deferrable Charger

6. On demand Charger

Optimization

Output Data

SIMULATION & ANALYSIS

Sensitivity

DR (7.75 - 8.75 • 9.75 -10.75 - 11.75 %)

IR( 6.5 -7.5 -8.5 -9.5 -10.5%)

Solar (4.05 • 4.55 - 5.02 - 5.55 • 6.05 kWh/m'/day)

Wind < 3.60 - 4.11 4.61 - 5.11 - 5.61 m/s)

Load (1664- 186.4 206.4 - 226.4 - 246.4 kWh/day)

Lifetime (5-10- 15-20-25 yrs)

LCOE NPC CAPEX RF EE IRR ROl PBP ICC ОС COi emission

(S/kWh) (SM) ($> (%) (%> (%l (yrs) ($M) (SM) (kg/year)

Fig. 2. Proposed HBTS system components Рис. 2. Компоненты предлагаемой системы HBTS

Билал Али Мухаммед, Аббас Казми Сайед Али. Зелёные энергетические системы для электромобилей с учётом...

Table 3. Advantages and disadvantages of renewable resources Таблица 3. Преимущества и недостатки возобновляемых ресурсов

Renewable energy sources Global share Advantages Disadvantages Top countries

Solar Energy [56, 57] 24.70% • Economical • Low maintenance • Longer life • Easy installation • Technical maturity • Larger land acquisition • Toxic material deposition • Relative lower efficiency • High initial costs • Intermittent • Susceptible to storms • Japan • China • Germany • United States

Wind Energy [58, 59] 25.26% • High efficiency • Greater technical maturity • Easy installation over land and water • Lower environmental impact • Reduce dependency on fossil fuels • Minimal water usage • Larger land acquisition • Intermittency and reliability issues • High initial costs • Noise and visual impact • Wildlife impact • Difficult to transport • United States • China • India • Germany

Biomass Energy [56, 57] 9-10% • Reliable and Sustainable • Versatile Energy source • Sustenance rural economies • Less dependency on fossil fuels • Compatible with existing infrastructure • Higher efficiency • Reduction of waste material • Carbon emissions • Deforestation and habitat use • Land and water resource use • Lower energy density • Air pollution • High cost for large scale production • Seasonal availability and storage • United States • China • Brazil • Germany • India • Sweden • Finland

Hydro Energy3 [60] 44.47% • Renewable and reliable • Low greenhouse gas emission • High energy efficiency • Flexible and adjustable power • Supports water management and irrigation • Long lifespan • Low operating costs • Flood and erosion • Displacement of communities • High initial costs • Risk of drought and water dependency • Lon construction time • Potential for methane emission • China • Brazil • Canada • United States • Russia • India • Norway

Table 4. A detailed overview of simulation tools to optimize renewable resources use

Таблица 4. Подробный обзор инструментов моделирования, используемых для оптимизации использования возобновляемых ресурсов

Tool name Developer Time-step Analysis type Accessibility

AEOLIUS Karlrsuhe Minutes Simulation only Commercial

Balmorel Individual Hourly Simulation, Balancing & Optimization Free

CREST NREL Hourly Optimization only Free

DER-CAM Micro grid team, Berkeley lab Hourly Optimization & Balancing Free

EnergyPLAN Aalborg University, Denmark Minutes Simulation only Commercial

E4cast ABARE Yearly Optimization & Balancing Commercial

ENPEP National Laboratory, USA Yearly Balancing only Free

EVST NREL Hourly Simulation & Optimization Paid

EMPS SITEF Weekly Simulation & Optimization Commercial

Gatecycle GE Hourly Simulation Only Paid

GridLAB-D PNNL Seconds Simulation only Free

HOMER NREL Hourly Simulation & Optimization Free + Paid

Helioscope Folsom Labs Minutes Simulation & Balancing Paid

INFORSE Europe Secretariat Yearly Balancing & Optimization Paid

Electricity from renewable resources: status, prospects, and impediments // Internet Archive. Available from: https://archive. org/details/electricityfromr0000nati/page/n7/mode/2up [Accessed 30th September 2023].

2024;28(4):534-549 ISSN 2782-6341 (online)

Продолжение табл. 4

IKARUS Institute of Energy Research Yearly Optimization only Commercial + Free

Invert EEG Yearly Simulation & Optimization Free

Kom Mod Fraunhofer IES Hourly Simulation only Unknown

LEAP Stockholm Institute Monthly & Daily Simulation & Optimization Paid

MESSAGE IIASA 5 years Optimization & Balancing Free

Mesap PlaNet IER Any Simulation & Optimization Commercial

NEMS EIA Weekly Balancing only Free

PVWatts NREL Hourly Simulation only Free

PVsyst PVsyst SA Minutes Simulation only Free

PERSEUS Karlsruhe University Typical days Simulation & Balancing Free + Paid

ProdRisk SINTEF Hourly Simulation & Optimization Commercial

RETScreen CEDRL Hourly Simulation & Balancing Free

REopt NREL Hourly Simulation & Optimization Free

ReEDS NREL Yearly Simulation only Free

SAM NREL Hourly Simulation & Optimization Free + Paid

SimREN iSUSI Minutes Simulation only Paid

WASP IAEA Yearly Simulation & Optimization Commercial + Free

Windographer AWS true power Hourly Simulation & Optimization Paid

Windpro EMD international Hourly Simulation & Optimization Paid

RESULT & DISCUSSION

In this section, result and discussion of proposed study is described. This section is separated into two sessions, one is "Optimization outcomes of Standalone and On-Grid EV's Based Hybrid BTS Sites" and second is "Optimal renewable resources and energy storage to optimized HRE Plants".

Optimization outcomes of Standalone and On-Grid EV-based Hybrid BTS Sites. It can be seen that, in this planned study, the 42 BTS sites from all over Pakistan is selected. It is evident that all objective functions (LCOE, ICC, NPC, and OC) and financial pa-

rameters (IRR, ROI, and PBP) are fulfilled following the combination of renewable resources (solar, biomass, hydro, and wind energy) with battery bank. The optimized output of standalone hybrid BTS sites are shown in Table 5.

The objective and financial parameters achieved by On-Grid EV's based hybrid BTS sites are revealed in Table 6. It can be seen that after integrating different types of electric vehicle charging stations and renewable resources (wind and solar) with battery storage system and grid, all objective and financial parameters are achieved.

Table 5. Optimized output parameters of standalone hybrid BTS sites

Таблица 5. Оптимизированные выходные параметры автономных гибридных BTS площадок

BTS site names Objective parameters Financial parameters Renewable resources and storage system On-grid and EV charging stations

LCOE ICC OPC NPC IRR ROI PBP £ Wind Biomass Hydro Battery On-Grid EV's

Chakwal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ X ✓ X X

Islamabad ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Jhelum ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Rawalpindi ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Talagang ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ X ✓ X X

Taxila ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Bajaur ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Dir ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ X X

Mardan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ X X

Chitral ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X ✓ ✓ X X

Swat ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ X X

Bilal Ali M., Abbas Kazmi S.A. Green energy systems for powering electric vehicles considering telecommunication system... Билал Али Мухаммед, Аббас Казми Сайед Али. Зелёные энергетические системы для электромобилей с учётом... Продолжение табл. 5

Kohat ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Nowshera ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Buner ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ X X

Peshawar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Abbottabad ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Kohistan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ X X

Mansehra ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ X X

Gilgit ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Mingora ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Malakand ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ X X

Kamri ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ X X

Mirpur ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ X X ✓ X X

Muzaffarabad ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ X X ✓ X X

Lahore ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Sheikhupura ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ X ✓ X X

Bhakkar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ X ✓ X X

Khushab ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Mianwali ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

DG Khan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ X ✓ X X

Layyah ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ X ✓ X X

Karachi-I ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X ✓ X X

Karachi-II ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X ✓ X X

Badin ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X ✓ X X

Hyderabad ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X ✓ X X

Mirpur Khas ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Ghotki ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Rajan Pur ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X ✓ X X

RahimYar Khan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Sukkur ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Gawadar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Quetta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X X

Table 6. Objective and financial parameters of On-grid EV-based hybrid BTS sites

Таблица 6. Объективные и финансовые параметры гибридных BTS площадок на базе On-grid EV

BTS site names Objective parameters Financial parameters On-grid and EV charging stations

LCOE ICC OPC NPC IRR ROI PBP PV Wind Battery On-Grid EV's

Islamabad ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Jhelum ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Bajaur ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Kohat ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Peshawar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Abbottabad ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Mingora ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Muzaffarabad ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Lahore ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Mianwali ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Karachi-I ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Badin ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hyderabad ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rajan Pur ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Quetta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓

2024;28(4):534-549

Optimal renewable resources and energy storage to optimized HRE Plants. In addition to computer software, authors have produced a number of novel models to address situations in which computer tools are not relevant. These models include a variety of commonly reviewed algorithms, such as GA, MCA, PSO, FL, or a combination of these approaches. Table 7 provides a summary of all the research based on these mathematical techniques. The advantages of these cutting-edge techniques are not thoroughly discussed in this article because it concentrated more on the computer tools method.

In conclusion, different techno-econom-ic [64] assessment methods are needed for HRES at the national, regional, and building scales since analytical criteria and concerns vary from scale to scale. Therefore, this paper suggests a framework for the HRES tech-no-economic analysis shown in Fig. 3, based on scale characteristics and research emphases. The following is an explanation of some promising approaches along with the associated inputs and outputs. The analysis takes a more macroscopic approach when examining systems at the national or international level. For example, it focuses more on whether the associated emissions and technology can meet the needs of national development, but

ISSN 2782-4004 (print) ISSN 2782-6341 (online)

it aims for less cost-effective outcomes. Because money is not a major issue for a nation when compared to a local location. Rather, socioeconomic viability is gathered as a crucial metric. Therefore, it is important to consider conditions such as LCOE, import/export policies, carbon taxes, and incentive programs beforehand. Furthermore, the most important technological restricting elements to be taken into account are the availability of resources (such as acquisition difficulty) and the possibility for RE use.

In this paradigm, regional systems are separated into two groups: those in state, federal, government property, cities, and industry, and those in remote, domestic, or island locations. The former is incorporated into the framework at the national level because they still have substantial territories. However, as they are all part of stand-alone systems, the latter always employ techniques and technologies similar to those used by building systems. A few factors should receive extra attention since techno-economic analysis for HRES in buildings requires solid and comprehensive system designing, in contrast to systems. First, it is crucial to research the weather because the available renewable resources are always changing. The installation specifications of certain components,

Table 7. A detailed description of technical and economic studies with developed models/algorithms Таблица 7. Подробное описание технико-экономических исследований с разработанными моделями/ алгоритмами

Location Selected renewable sources Proposed approach Selected algorithms Objective functions Ref.

Germany Solar & Hydro REMoD-D Mathematical numeric optimizer Annual cost [61]

Ontario Solar, Wind, Hydro, Hydrogen & Biomass Silver model Linear optimization Total generated cost [62]

Japan Solar & Wind Top-down - - [63]

Agricultural Solar & Biogas Homan method [65] Net present value method NPV [65]

Public building Solar - MATLAB Algorithm Life cycle cost [66]

City Solar & Wind Computer program - Total cost [67]

India Solar, Wind, Hydro, Biomass and Hydrogen Multi-node - Total cost [68]

Residential Solar, Wind & Hydrogen Optimization model GA & PSO Total cost [69]

New Zealand Geothermal, Wind, Hydro & Biomass Analytical approach - Energy Spillage [70]

City Solar & Battery - Differential evolution LCOE & LCC [71]

Commercial Solar, Wind & Battery - Firefly inspired COE [72]

Industrial Solar, Wind & Battery - Multi-objective grey wolf COE [73]

Australia Solar, Wind, Hydro, Biomass & Geothermal Computer program - Energy consumption [74]

Fig. 3. Proposed framework for a standalone system and a complex hybrid system Рис. 3. Предлагаемая структура для автономной и сложной гибридной систем

such as the number and slope angle of PV, the number and hub height of WT, the options for battery capacity, etc., are also crucial considerations.

Second, the primary financial limitations are the costs of system equipment and local

energy prices. Thirdly, natural influence should be taken into account when installing RE projects. This means that original structures such as farms, plants, landscapes, natural conserved areas, or small-scale elements (for islands) shouldn't be destroyed.

2024;28(4):534-549

ISSN 2782-6341 (online)

Furthermore, the foundation of RE projects is local support and public acceptance. Another important consideration is the target people's comfort and convenience, as designed systems are meant to serve them. In particular, while creating systems for resorts, the original landscape and tourism development should not be compromised. Not to be overlooked is the seasonal load change brought on by the tourist peak. One can choose the points that meet the specific analysis and determine the aforementioned spatial scale requirements before beginning to examine a system. The most suggested tools, HOMER, RETScreen, and H2RES, can then be used to acquire detailed output results that include economic, technical, and environmental performance. Generally speaking, this architecture consists of three processes for systems, whether they are large-scale or standalone. First, the key characteristics and needs of a certain system type and spatial scale are noted. The best models or tools are then recommended. The techno-eco-nomic evaluation may finally be carried out in its entirety thanks to the encouraging simulation findings and outputs that were offered in the framework's last step. The suggested tools can effectively support HRES on their respective scales within this framework [75].

Through scenario analysis, energy balance, system configuration optimization, relevant indicator calculation, etc., they are utilized to solve techno-economic assessment problems in an efficient manner. Numerous applications mentioned in this study and on these six tools' official website demonstrated their exceptional capacity to direct practices. Therefore, the suggested framework is successfully validated using the aforementioned workable tools in addition to the real inputs taking into account the numerous limiting considerations mentioned at the outset. In addition to helping system designers understand potential carelessness and other factors that should be taken into account when developing diverse energy systems, it can offer a very efficient means of doing future research in the field of HRES techno-economic analysis at various spatial levels.

CONCLUSION

Growing demand for power Providing consistent electricity to connected loads is be-

coming more challenging due to the sporadic nature of individual renewable resources. The intermittent nature of HRES may be addressed by an efficacious and enduring energy storage system, which lowers maintenance costs and, consequently, the overall operating expenses of the system. However, when paired with storage bank system, hybridization can help mitigate the sporadic nature of HRES. Flywheels, compressed air energy storage, hydrogen fuel cells, super capacitors, super conducting magnetic energy storage, pumped hydro energy storage, and battery storage systems are some of the energy storage options offered by HRES. Compared to a battery and other storage systems, the integrated system delivers improved round-trip efficiency, increased reliability of the power supply, reduced revenue losses, cost savings, a low investment cost, maximum accessible energy, a longer lifespan, and less greenhouse gas emissions. According to earlier research, two of the most useful HRES storage options are freshwater resources.

The following ideas have been put up to conquer the previously described confrontation to the ideal sizing of HRES acceptance with ESS combination:

• The present state of HRES technology, when combined with ESS, may cover several problems with the earlier technology, such as capacity, competence, and dependability. The extent to which this innovation will be further developed for upcoming usage in MG technology has been selected. Energy sizing, cost, safety, and efficacious management are becoming the attention of study.

• For the components of the HRES and ESS systems to scale adequately, intelligent procedures (meta-heuristic approaches) must be collective used with the right control settings, or more efficacious methods must be established. It might be argued that the hybrid GWOPSO optimization approaches are the finest at accomplishing the objective of an ESS in combination with a reliable, cost-effective, and ecologically friendly HRES.

• HRES needs an ESS that associates the features of a high-power and energy storage system in order to decrease power quality problems and improve system stability and reliability. High-energy ESS devices react more slowly and have a longer lifespan, whereas high-pow-

er devices assistance temporarily from rapid reactions at high rates. Combining both of these ESS types could result in improved power quality with connected loads.

According to many study results, FITs for loads in grid-connected HRES must be achieved by supplying excess energy to the grid. Consequently, a greater proportion of HRES currently use renewable sources. In order to lower power costs and generate revenue for the municipal, the FIT enables users to sell their excess energy to the grid. To optimize component size based on emission, reliability, and economic functions, new software tools and meta-heuristic optimization methodologies are required. Meta-heuristic optimization methods work better for scaling HRES. However, current software tools, including the HOMER software, are incompetent to address multi-objective problems. It is also difficult to deploy demand-side management response systems using this software. After that, software may be used, allowing designers to more freely size HRES systems.

The summary of prospective research projects of techno-economic evaluation in HRES

for all spatial scales based on the gaps and current research progress is explained below:

• Setting a maximum limit for the share of possible RE is crucial to preventing excess energy output during the integration of RE sources into a system. Currently, there are a few indicators that quantify this limit, but the most of them were created for EnergyPLAN software assessments. One goal to be accomplished in the future is to define more types of measurement indexes that apply to various tools.

• At the moment, self-built analysis models and programs are highly independent but insufficiently flexible. Usually, authors who are in their own region at comparable spatial scales invent them first, then use them. To build on their advantages and increase their adaptability, these various models and programs can be integrated and used in various case studies in subsequent projects.

• Develop a set of comprehensive assessment metrics suitable for HRES at all sizes, from building to global. Create an integrated techno-economic evaluation system or HRES model for all scales to improve assessment's efficiency and convenience.

References

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1. Abdulmula A.M.O., Sopian K.B., Kazlizan A., Lim Chin Haw. Performance evaluation of standalone double axis solar tracking system with maximum light detection MLD for telecommunication towers in Malaysia. International Journal of Power Electronics and Drive Systems. 2019;10(1):444-453. https://doi.org/10.11591/ijpeds.v10n1. pp444-453.

2. Amutha W.M., Andrew H.C., Shajie A.D., Paulraj J.P.I. Renewable power interface based rural telecom. International Journal of Power Electronics and Drive System. 2019.10(2):917-927. https://doi.org/10.11591/ijpeds. v10.i2.pp917-927.

3. Oviroh P.O., Jen Tien-Chien. The energy cost analysis of hybrid systems and diesel generators in powering selected base transceiver station locations in Nigeria. Energies. 2018;11(3):687. https://doi.org/10.3390/en11030687.

4. Zebra E.I.C., Windt H.J., Nhumaio G., Faaij A.P.C. A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renewable and Sustainable Energy Reviews. 2021;144:111036. https://doi.org/10.1016/j.rser.2021.111036.

5. Semaoui S., Arab A.H., Bacha S., Azoui B. The new strategy of energy management for a photovoltaic system without extra intended for remote-housing. Solar energy. 2013;94:71-85. https://doi.org/10.1016/j.solener.2013.04.029.

6. Robitaille M., Agbossou K., Doumbia M.L. Modeling of an islanding protection method for a hybrid renewable distributed generator. In: Canadian Conference on Electrical and Computer Engineering. 2005. https://doi.org/ 10.1109/CCECE.2005.1557259.

7. Sahoo U., Kumar R., Singh S.K., Tripathi A.K. Energy, exergy, economic analysis and optimization of polygeneration hybrid solar-biomass system. Applied Thermal Engineering. 2018;145:685-692. https://doi.org/10.1016/ j.applthermaleng.2018.09.093.

8. Koohi-Kamali S., Rahim N.A. Coordinated control of smart microgrid during and after islanding operation to prevent under frequency load shedding using energy storage system. Energy conversion and management. 2016;127:623-646. https://doi.org/10.1016/j.enconman.2016.09.052.

9. Raveendhra D., Poojitha R., Narasimharaju B.L., Domyshev A., Dreglea A., Dao Minh Hien, et al. Part II: State-of-the-art technologies of solar-powered DC microgrid with hybrid energy storage systems: converter topologies. Energies. 2023;16(17):6194. https://doi.org/10.3390/en16176194.

10. Shezan S.A., Ishraque M.F., Muyeen S.M., Arifuzzaman S.M., Paul L.C., Das S.K., et al. Effective dispatch strategies assortment according to the effect of the operation for an islanded hybrid microgrid. Energy Conversion and Management:X. 2022;14:100192. https://doi.org/10.1016/j.ecmx.2022.100192.

11. Kuetche C.F.M., Tsuanyo D., Fopah-Lele A. Analysis of hybrid energy systems for telecommunications equipment: a case study in Buea Cameroon. In: Renewable Energy and digital technologies for the development of Africa: E3S Web of Conferences. 2022;354:02007. https://doi.org/10.1051/e3sconf/202235402007.

12. Naderipour A., Ramtin A.R., Abdullah A., Marzbali M.H., Nowdeh S.A., Kamyab H. Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis. Energy. 2022;239(D):122303. https://doi.org/10.1016Aenergy.2021.122303.

13. Kushwaha P.K., Bhattacharjee C. Integrated techno-economic-enviro-socio design of the hybrid renewable energy system with suitable dispatch strategy for domestic and telecommunication load across India. Journal of Energy Storage. 2022;55(А):105340. https://doi.org/10.1016Aest.2022.105340.

14. Okundamiya M.S., Wara S.T., Obakhena H.I. Optimization and techno-economic analysis of a mixed power system for sustainable operation of cellular sites in 5G era. International Journal of Hydrogen Energy. 2022;47(39):17351-17366. https://doi.org/10.1016Aijhydene.2022.03.207.

15. Memon S.A., Upadhyay D.S., Patel R.N. Optimal configuration of solar and wind-based hybrid renewable energy system with and without energy storage including environmental and social criteria: а case study. Journal of Energy Storage. 2021;44:103446. https://doi.org/10.1016Aest.2021.103446.

16. Khan F.A., Pal N., Saeed S.H. Optimization and sizing of SPV/wind hybrid renewable energy system: a techno-economic and social perspective. Energy. 2021;233:121114. https://doi.org/10.1016Aenergy.2021. 121114.

17. Ali F., Ahmar M., Jiang Yuexiang, AlAhmad M. A techno-economic assessment of hybrid energy systems in rural Pakistan. Energy. 2021;215(А):119103. https://doi.org/10.1016Aenergy.2020.119103.

18. Das B.K., Alotaibi M.A., Das P., Islam M.S., Das S.K., Hossain M.A. Feasibility and techno-economic analysis of stand-alone and grid-connected PV/wind/diesel/batt hybrid energy system: а case study. Energy Strategy Reviews. 2021;37:100673. https://doi.org/10.1016Aesr.2021.100673.

19. Kumar A., Verma A. Optimal techno-economic sizing of a solar-biomass-battery hybrid system for off-setting dependency on diesel generators for microgrid facilities. Journal of Energy Storage. 2021;36:102251. https://doi.org/ 10.1016/j.est.2021.102251.

20. Amara S., Toumi S., Salah C.B., Saidi A.S. Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system. Energy. 2021;233:121166. https://doi.org/10.1016Aenergy.2021.121166.

21. Alshammari N., Asumadu J. Optimum unit sizing of hybrid renewable energy system utilizing harmony search, Jaya and particle swarm optimization algorithms. Sustainable Cities and Society. 2020;60:102255. https://doi.org/ 10.1016/j.scs.2020.102255.

22. Diab A.A.Z., Sultan H.M., Kuznetsov O.N. Optimal sizing of hybrid solar/wind/hydroelectric pumped storage energy system in Egypt based on different meta-heuristic techniques. Environmental Science and Pollution Research. 2020;27(26):32318-32340. https://doi.org/10.1007/s11356-019-06566-0.

23. Ramesh M., Saini R.P. Dispatch strategies based performance analysis of a hybrid renewable energy system for a remote rural area in India. Journal of Cleaner Production. 2020;259:120697. https://doi.org/10.1016/jjcle-pro.2020.120697.

24. Li Chong, Zhou Dequn, Wang Hui, Lu Yuzheng, Li Dongdong. Techno-economic performance study of standalone wind/diesel/battery hybrid system with different battery technologies in the cold region of China. Energy. 2020;192:116702. https://doi.org/10.1016Aenergy.2019.116702.

25. Veilleux G., Potisat T., Pezim D., Ribback С. Techno-economic analysis of microgrid projects for rural electrification: а systematic approach to the redesign of Koh Jik off-grid case study. Energy for Sustainable Development. 2020;54:1-13. https://doi.org/10.1016Aesd.2019.09.007.

26. Aziz A.S., Tajuddin M.F.N., Adzman M.R., Mohammed M.F., Ramli M.A.M. Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: а case study of Iraq. Energy. 2020;191:116591. https://doi.org/ 10.1016/j.energy.2019.116591.

27. Mayer M.J., Szilagyi A., Grôf G. Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Applied Energy. 2020;269:115058. https://doi.org/10.1016A apenergy.2020.115058.

28. Odou O.D.T., Bhandari R., Adamou R. Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renewable Energy. 2020;145:1266-1279. https://doi.org/10.1016Arenene.2019.06.032.

29. Kumar J., Suryakiran B.V., Verma A., Bhatti T.S. Analysis of techno-economic viability with demand response strategy of a grid-connected microgrid model for enhanced rural electrification in Uttar Pradesh state, India. Energy. 2019;178:176-185. https://doi.org/10.1016Aenergy.2019.04.105.

30. Kim Min-Hwi, Kim Deukwon, Heo Jaehyeok, Lee Dong-Won. Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community. Energy. 2019;187:115916. https://doi. org/10.1016/j.energy.2019.115916.

31. Baseer M., Alqahtani A., Rehman S. Techno-economic design and evaluation of hybrid energy systems for residential communities: œse study of Jubail industrial city. Journal of Cleaner Production. 2019;237:117806. https:// doi.org/10.1016/j.jclepro.2019.117806.

32. Javed M.S., Song Aotian, Ma Tao. Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm. Energy. 2019;176:704-717. https://doi.org/10.1016Aener-gy.2019.03.131.

33. Sawle Y., Gupta S.C., Bohre A.K. Socio-techno-economic design of hybrid renewable energy system using optimization techniques. Renewable Energy. 2018;119:459-472. https://doi.org/10.1016/j.renene.2017.11.058.

34. Ahmad J., Imran M., Khalid A., Iqbal W., Ashraf S.R., Adnan M., et al. Techno economic analysis of a wind-pho-tovoltaic-biomass hybrid renewable energy system for rural electrification: а case study of Kallar Kahar. Energy. 2018;148:208-234. https://doi.org/10.1016/j.energy.2018.01.133.

35. Duman A.C., GQler 0. Techno-economic analysis of off-grid PV/wind/fuel cell hybrid system combinations with a comparison of regularly and seasonally occupied households. Sustainable Cities and Society. 2018;42:107-126. https://doi.org/10.1016/j.scs.2018.06.029.

36. Alharthi, Ya.Z., Siddiki M.K., Chaudhry G.M. Resource assessment and techno-economic analysis of a grid-connected solar PV-wind hybrid system for different locations in Saudi Arabia. Sustainability. 2018;10(10):3690. https://doi.org/10.3390/su10103690.

37. Das B.K., Zaman F. Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection. Energy. 2019;169:263-276. https://doi.org/10.1016/j. energy.2018.12.014.

38. Kumar A., Singh A.R., Deng Yan, He Xiangning, Kumar Praveen, Bansal R.C. A novel methodological framework for the design of sustainable rural microgrid for developing nations. Ieee Access. 2018;6:24925-24951. https://doi. org/10.1109/ACCESS.2018.2832460.

39. Park E. Potentiality of renewable resources: economic feasibility perspectives in South Korea. Renewable and Sustainable Energy Reviews. 2017;79:61-70. https://doi.org/10.1016/j.rser.2017.05.043.

40. Yilmaz S., Dincer F. Optimal design of hybrid PV-diesel-battery systems for isolated lands: а case study for Kilis, Turkey. Renewable and Sustainable Energy Reviews. 2017;77:344-352. https://doi.org/10.1016/j.rser.2017.04.037.

41. Al-Sharafi A., Sahin A.Z., Ayar T., Yilbas B.S. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renewable and Sustainable Energy Reviews. 2017;69:33-49. https://doi.org/10.1016/j.rser.2016.11.157.

42. Shahzad M.K., Zahid A., Rashid T.U., Rehan M.A., Ali M., Ahmad M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable Energy. 2017;106:264-273. https://doi.org/10.1016/j.renene.2017.01.033.

43. Jaiswal A. Lithium-ion battery based renewable energy solution for off-grid electricity: a techno-economic analysis. Renewable and Sustainable Energy Reviews. 2017;72:922-934. https://doi.org/10.1016/j.rser.2017.01.049.

44. Azimoh C.L., Klintenberg P., Mbohwa C., Wallin F. Replicability and scalability of mini-grid solution to rural electrification programs in sub-Saharan Africa. Renewable Energy. 2017;106:222-231. https://doi.org/10.1016/j.renene.2017.01.017.

45. Das H.S., Tan Chee Wei, Yatim A.H.M., Lau Kwan Yiew. Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia. Renewable and Sustainable Energy Reviews. 2017;76:1332-1347. https://doi.org/10.1016/j.rser.2017.01.174.

46. Vides-Prado A., Camargo E.O., Vides-Prado C., Orozco I.H., Chenlo F., Candelo J.E. Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira. Renewable and Sustainable Energy Reviews. 2018;82(3):4245-4255. https://doi.org/10.1016/j.rser.2017.05.101.

47. Ajlan A., Tan Chee Wei, Abdilahi A.M. Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen. Renewable and Sustainable Energy Reviews. 2017;75:559-570. https:// doi.org/10.1016/j.rser.2016.11.024.

48. Halabi L.M., Mekhilef S., Olitomiwa L. Performance analysis of hybrid PV/diesel/battery system using HOMER: а case study Sabah, Malaysia. Energy conversion and management. 2017;144:322-339. https://doi.org/10.1016/j. enconman.2017.04.070.

49. Qolipour M., Mostafaeipour A., Tousi O.M. Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: а case study. Renewable and sustainable energy reviews. 2017;78(С):113-123. https://doi.org/10.1016/j.rser.2017.04.088.

50. Becerra M., Moran J., Cepeda F., Valenzuela M. Wind energy potential in Chile: assessment of a small scale wind farm for residential clients. Energy Conversion and Management. 2017;140:71-90. https://doi.org/10.1016/j. enconman.2017.02.062.

51. Eltamaly A.M., Mohamed M.A., Al-Saud M.S., Alolah A.I. Load management as a smart grid concept for sizing and designing of hybrid renewable energy systems. Engineering Optimization. 2017;49(10):1813-1828. https://doi.org/ 10.1080/0305215X.2016.1261246.

52. Mohamed M.A., Eltamaly A.M., Alolah A.I. Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems. Renewable and Sustainable Energy Reviews. 2017;77:515-524. https://doi.org/10.1016/j. rser.2017.04.048.

53. Ansari M.S., Jalil M.F., Bansal R. A review of optimization techniques for hybrid renewable energy systems. International Journal of Modelling and Simulation. 2023;43(5):722-735. https://doi.org/10.1080/02286203.20 22.2119524.

54. Bansal A.K. Sizing and forecasting techniques in photovoltaic-wind based hybrid renewable energy system: а review. Journal of Cleaner Production. 2022;369:133376. https://doi.org/10.1016/jjclepro.2022.133376.

55. Kumar P., Pal N., Sharma H. Optimization and techno-economic analysis of a solar photo-voltaic/biomass/ diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India. Energy. 2022;247:123560. https://doi.org/10.1016/j.energy.2022.123560.

iPolytech Journal

56. Healy M.L., Dahlben L.J., Isaacs J.A. Environmental assessment of single-walled carbon nanotube processes. Journal of Industrial Ecology. 2008;12(3):376-393. https://doi.org/10.1111/j.1530-9290.2008.00058.x.

57. Tsoutsos T., Frantzeskaki N., Gekas V. Environmental impacts from the solar energy technologies. Energy policy. 2005;33(3):289-296. https://doi.org/10.1016/S0301-4215(03)00241-6.

58. Nazir M.S., Mahdi A.J., Bilal M., Sohail H.M., Ali N., Iqbal H.M.N. Environmental impact and pollution-related challenges of renewable wind energy paradigm - a review. Science of the Total Environment. 2019;683:436-444. https://doi.org/10.1016/j.scitotenv.2019.05.274.

59. Nazir M.S., Ali N., Bilal M., Iqbal H. Potential environmental impacts of wind energy development: а global perspective. Current Opinion in Environmental Science & Health. 2020;13:85-90. https://doi.org/10.1016/ j.coesh.2020.01.002.

60. Fearnside P.M. Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: Implications for the aluminum industry. World development. 2016;77:48-65. https://doi.org/10.1016/j.worlddev.2015.08.015.

61. Henning H.-M., Palzer A. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies - Part I: Methodology. Renewable and Sustainable Energy Reviews. 2014;30:1003-1018. https://doi.org/10.1016/J.RSER.2013.09.012.

62. McPherson M., Karney B. A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model. Energy. 2017;138:185-196. https://doi.org/10.1016/j.energy.2017.07.027.

63. Esteban M., Portugal-Pereira J. Post-disaster resilience of a 100% renewable energy system in Japan. Energy. 2014;68:756-764. https://doi.org/10.1016/j.energy.2014.02.045.

64. Esen H., Inalli M., Esen M. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling. Building and environment. 2007;42(5):1955-1965. https://doi.org/10.1016/j.build/ env.2006.04.007.

65. Esen M., Yuksel T. Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy and Buildings. 2013;65:340-351. https://doi.org/10.1016/j.enbuild.2013.06.018.

66. Ajan C.W., Ahmed S.S., Ahmad H.B., Taha F., Zin A.A.B.M. On the policy of photovoltaic and diesel generation mix for an off-grid site: East Malaysian perspectives. Solar Energy. 2003;74(6):453-467. https://doi.org/10.1016/ S0038-092X(03)00228-7.

67. Hosseinalizadeh R., Shakouri G.H., Amalnick M.S., Taghipour P. Economic sizing of a hybrid (PV-WT-FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: case study of Iran. Renewable and Sustainable Energy Reviews. 2016;54:139-150. https://doi.org/10.1016/j.rser.2015.09.046.

68. Gulagi A., Choudhary P., Bogdanov D., Breyer C. Electricity system based on 100% renewable energy for India and SAARC. PLoS One. 2017;12(7):e0180611. https://doi.org/10.1371/journal.pone.0180611.

69. Maleki A., Hafeznia H., Rosen M.A., Pourfayaz F. Optimization of a grid-connected hybrid solar-wind-hydrogen CHP system for residential applications by efficient metaheuristic approaches. Applied Thermal Engineering. 2017;123:1263-1277. https://doi.org/10.1016/j.applthermaleng.2017.05.100.

70. Mason I.G., Page S.C., Williamson A.G. A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources. Energy policy. 2010;38(8):3973-3984. https://doi.org/10.1016/j. enpol.2010.03.022.

71. Ridha H.M., Gomes C., Hazim H., Ahmadipour M. Sizing and implementing off-grid stand-alone photovoltaic/battery systems based on multi-objective optimization and techno-economic (MADE) analysis. Energy. 2020;207:118163. https://doi.org/10.1016/j.energy.2020.118163.

72. Kaabeche A., Diaf S., Ibtiouen R. Firefly-inspired algorithm for optimal sizing of renewable hybrid system considering reliability criteria. Solar Energy. 2017;155:727-738. https://doi.org/10.1016/j.solener.2017.06.070.

73. Guezgouz M., Jurasz J., Bekkouche B., Ma Tao, Javed M.S., Kies A. Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems. Energy Conversion and Management. 2019;199:112046. https:// doi.org/10.1016/j.enconman.2019.112046.

74. Elliston B., Diesendorf M., MacGill I. Simulations of scenarios with 100% renewable electricity in the Australian National electricity market. Energy Policy. 2012;45:606-613. https://doi.org/10.1016/j.enpol.2012.03.011.

75. 0stergaard P.A. Reviewing EnergyPLAN simulations and performance indicator applications in EnergyPLAN simulations. Applied Energy. 2015;154:921-933. https://doi.org/10.1016/j.apenergy.2015.05.086.

INFORMATION ABOUT THE AUTHORS ИНФОРМАЦИЯ ОБ АВТОРАХ

Muhammad Bilal Ali, Билал Али Мухаммед,

Cand. Sci. (Med.), PhD scholar к.м.н.,

in Electrical Engineering (Power) Scholar, научный сотрудник Американо-Пакистанского

U.S.-Pakistan Center for Advanced Studies in Energy, центра перспективных исследований

National University of Sciences and Technology, в области энергетики,

Islamabad 44000, Pakistan Национальный университет наук и технологий,

Н [email protected] 44000, г. Исламабад, Пакистан

https://orcid.org/0000-0001-8797-8519 М [email protected]

https://orcid.org/0000-0001-8797-8519

Билал Али Мухаммед, Аббас Казми Сайед Али. Зелёные энергетические системы для электромобилей с учётом...

Syed Ali Abbas Kazmi,

Associate Professor,

U.S.-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad 44000, Pakistan [email protected]

Аббас Казми Сайед Али,

доцент Американо-Пакистанского центра перспективных исследований в области энергетики,

Национальный университет наук и технологий, 44000, г. Исламабад, Пакистан [email protected]

Authors' contribution

Muhammad Bilal Ali performed the research, developed research methodology, provided software support, validation, conceptualization, visualization. He also wrote an original copy of the article, edited and formatted it. Syed Ali Abbas Kazmi collected data, performed formal analysis, dealt with resources, review, editing and supervision of the article.

Conflict of interests

The authors declare no conflict of interests.

The final manuscript has been read and approved by all the co-authors.

Information about the article

The article was submitted 08.10.2024; approved after reviewing 30.10.2024; accepted for publication 20.11.2024.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Заявленный вклад авторов

Билал Али М.: исследование, методология, программное обеспечение, проверка, концептуализация, визуализация, роли/написание - первоначальный вариант, написание и редактирование, форматирование. Аббас Казми С.А.: сбор данных, формальный анализ, ресурсы, обзор и редактирование, надзор.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Все авторы прочитали и одобрили окончательный вариант рукописи.

Информация о статье

Статья поступила в редакцию 08.10.2024 г.; одобрена после рецензирования 30.10.2024 г.; принята к публикации 20.11.2024 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.