ISSN 1992-6502 (Print)
Vol. 18, no. 5 (66), pp. 62-67, 2014
"Bmmk QjrAQnQj
VcgtHiti UQA7U
ISSN 2225-2789 (Online)
http://journal.ugatu.ac.ru
UDC 004.65
Geoinformation system of geomagnetic pseudostorm
parameters registration and analysis
a. v. Vorobev, g. r. Shakirova
[email protected] Ufa State Aviation Technical University, Russia Submitted 2014, June 10
Abstract. A new approach to the development of geoinformation systems for geomagnetic pseudostorm parameters registration is supposed. The term "geomagnetic pseudostorm" supposes an influence of geoma g-netic field to the object in its existence area within anisotropic geomagnetic field in condition of non-zero object speed. The paper describes the results of experiment, which demonstrates geomagnetic pseudostorm effect on example of civil airplane, performing an air route AA937 (American Airlines).
Key words: geoinformation systems; geomagnetic field; geomagnetic pseudostorm.
1. INTRODUCTION
In modern world specialists in biology, medicine, geophysics, geology, technics, sociology, psychology and many other spheres pay great attention to the analyses of external geomagnetic variations (GMV). It is necessary to compare GMV parameters with their influence on existence and progress of objects and systems of various origin types.
This interest is based on idea, that according to statistic data some GMV components or their combinations can directly or indirectly affect on biological, technical, geological and other objects and systems in whole or on a human in part. As a result distorted normal conditions of the system existence necessitate it either to adapt to magnetic state changes (through deformation, mutation, etc.) or to keep existing there in stress (unstable) mode [1].
The problem of negative GMV influence is especially acute in the sphere of development and maintenance of various airspace equipment. This situation is mainly caused by human interaction with a great number of complicated navigation, information measuring and controlling systems in conditions of flight incessancy and significant distances from terrestrial technical services.
The statistics of emergency situations onboard defines, that the great majority of them are connected with human factor (57%) and/or board equipment failure (22%). Let's compare this fact with mainly negative, unpredictable and little studied GMV influence on both technical and biological systems and objects [2-6]. It is supposed, that detailed GMV
The reported study was supported by RFBR, research projects No. 14-07-00260-a, 14-07-31344-mol_a.
analyses (including geomagnetic pseudostorm), and synthesis of algorithms of their minimizations can facilitate increasing board equipment resiliency and flight safety.
So, the research, which is described in this paper, has a task of detecting the amplitude-frequency range of geomagnetic pseudostorm effect, its analyses, comparison with the analogical natural kind GMV parameters and making conclusions about minimizing geomagnetic pseudostorm effect on aircraft flight.
2. CONTEMPORARY RESEARCH OF GEOMAGNETIC FIELD AND ITS VARIATIONS
Nowadays a problem of GMV parameters research and analyses is partly solved by a number of magnetic observatories, which are mainly based on Europe territory.
Published research materials mainly include the results on amplitude range, character and dynamics of geomagnetic field parameters in the Earth point with appropriate geographical coordinates (latitude, longitude, altitude). But it is still unclear, how much is the value of particular GMV influence on object of both biological and technogenic type is. These particular GMV take place only to the appropriate object within the concrete space limits of its existence, when the object is moving in conditions of geomagnetic field anisotropy.
In scientific papers [7-8] the term of geomagnetic pseudostorm effect is defined. According to this, the geomagnetic pseudostorm effect is a geomagnetic field force action to the object (including biological type objects) in objects existence area
within undisturbed anisotropic geomagnetic field in conditions of none-zero angular and / or linear velocity of the object.
Thereby this paper represents the primary scientific problem of detection, analyses and estimation of main parameters of particular GMV, which take place in conditions of undisturbed geomagnetic field during the aircraft flight.
3. CONCEPTION OF GEOMAGNETIC PSEUDOSTORM
To demonstrate the example of geomagnetic pseudostorm effect let's compare magnetic influence of disturbed geomagnetic field to some stationary object with force action to the same object in conditions of anisotropic liquid flow, which permanently changes its direction and velocity. This analogy demonstrates dynamics of performed magnetic-force actions from the real magnetic storms to the studied static object or system.
Then, saving liquid anisotropic properties, let's qualitatively estimate force actions to the same object in static area with none-zero angle and linear velocity. It is obvious, that the common dynamics in modified conditions can be compared with dynamics from the mentioned example. It depends on both object velocity and gradient of area heterogeneity. To formalize this kind of influence let's project this analogy to object or system in anisotropic magnetic field. It is supposed to enter the term geomagnetic pseudostorm (GPS), which demonstrates real magnetic storms special influence on object in conditions of undisturbed geomagnetic field anisotropy and none-linear velocity of this object.
4. MODELING AND ESTIMATION OF UNDISTURBED GEOMAGNETIC FIELD PARAMETERS
Let's define the full vector of Earth magnetic field induction in geographic point with geospatial coordinates (latitude, longitude, altitude, year) as a following sum:
Bge = Bi + B2 + B3, where B1 is a vector of Earth internal sources geomagnetic field induction; B2 is a regular component of the vector of magnetosphere currents geomagnetic field induction, which is calculated in solar-magnetospheric coordinates; B3 is irrational component of the vector of magnetosphere currents geomagnetic field induction.
Magnetic field of Earth internal sources B1 defines force characteristics of undisturbed geomagnetic field made by the electric currents in earth's core (main field), which is ~ 98 % of the whole field. The fields of terrestrial magnetism are made
by magnetic properties of rocks and are about 2 % of the whole field. Besides the field of Earth core decreases quicker than the main field. And at altitude about 100 km this value can be ignored.
Let's define the model of main field as a series of spherical harmonics depending on geographic coordinates. It is known, that this approach with series size of 10-13 harmonics provides a calculation error of main geomagnetic field about 2 %.
In this case scalar potential of Earth internal sources geomagnetic dipole induction U [nT*km] in the point with spherical coordinates r, 9, X is defined as follows: U = Re x
. n+1
R,
N n /
x X £ (gm cos(mX) + hm sin(mX)I R3- I Pm cos(0),
n=1m=0 ^ r '
(1)
where r is the distance from Earth center to observation point (geocentric distance), [km]; X is a longitude from the Greenwich meridian, [degrees]; 9 is a polar angle (addition to latitude, 9 = (n/2)-^', [degrees], where 9' is latitude in spherical coordinates, [degrees]); RE = 6371.03 is an average radius of Earth, [km]; gnm(t), hnm(t) are spherical harmonic coefficients [nTesla], which depend on time parameter; Pnm are Schmidt-normalized associated Legendre functions with power n and order m [78].
In specialized literature an expression (1) is known as Gaussian series. This expression is defined as international standard of undisturbed state of Earth magnetosphere. So it is possible to assume, that B0 ~ B1, where B0 is an induction of undisturbed geomagnetic field in the local point of Earth surface. Schmidt-normalized associated Legendre function Pnm from expression (1) can be defined as orthogonal polynomial:
pm (cos(0))=1- 3 • 5
(n + m)!(n - m)!
x sinm 0[cosn-m 0 - (n - m)(n - m-1) co^-2 + 2(2n -1)
(n - m)(n - m - 1)(n - m - 2)(n - m - 3) n-m-4 q t + 2 • 4(2n - 1)(2n - 3) C0S "'
where em is normalization factor (em = 2 for m > 1 and em = 1 for m = 0); n and m are power and order of spherical harmonics.
5. EXPERIMENT AND ITS RESULTS ANALYSES
Let's consider the example of flight AA937 New York - Rio de Janeiro of the American Airlines airplane Boeing 767. An approximate plane path is represented on Fig. 1.
£
m
x
180° W 135°W 90° W 45°W
Fig. 1. An approximate plane path of Boeing 767-300 on flight AA973
Table 1
Experimental data
# Latitude Longitude Altitude m./ft. BX, nTesla By, nTesla BZ, nTesla B, nTesla
1. 40.63° N 73.77° W 2/6 23781 -4665 47771 53566
2. 39.22° N 72.39° W 4633/15200 24211 -4940 46275 52459
3. 37.71° N 70.96° W 10698/35100 24619 -5206 44594 51204
4. 35.86° N 69.18° W 11033/36200 25147 -5543 42598 49776
5. 32.61° N 66.52° W 11033/36200 25978 -6011 39032 47270
6. 28.60° N 63.53° W 11033/36200 26821 -6497 34471 44157
7. 25.95° N 61.71° W 11033/36200 27289 -6787 31405 42154
8. 22.97° N 59.82° W 11033/36200 27741 -7102 27937 40006
9. 19.86° N 58.04° W 11033/36000 28123 -7426 24316 37912
10. 14.49° N 55.29° W 11033/36000 28473 -7992 18023 34633
11. 10.41° N 53.45° W 11033/36000 28346 -8393 13222 32384
12. 06.44° N 51.67° W 11033/36000 27782 -8729 8507 30338
13. 01.75° N 49.91° W 11033/36000 26483 -8945 3202 28136
14. 05.93° S 47.43° W 11033/36000 23134 -8809 -4437 25149
15. 14.32° S 45.14° W 11033/36000 18806 -8031 -10569 23019
16. 20.91° S 43.71° W 5974/19600 15673 -7175 -13762 22057
The Table 1 represents the results of experiment and describes magnetic field variations onboard Boeing 767-300 plane on flight AA-973. The results are obtained via authors-made program and instrumental complex [9-10]. All the data are registered every 9 minutes (540 seconds).
Figure 2 represents graphical view of exprerimental data of geomagnetic pseudostorm dynamics (Fig 2, a) and the results of frequency analyses (Fig. 2, b). There are some special points: t1-t2 is the climb time; t2-t4 is flight time at cruising speed; t4-t5 is landing time; t3 is a moment of passing equator.
Let's analyze Fig. 2 and compare amplitude-frequency characteristics of geomagnetic pseudostorm and traditional GMV parameters. The conclusion is that geomagnetic pseudostorm effect amplitude and frequency are bigger than GMV more than 2 orders.
It is obvious that geomagnetic pseudostorm parameters depend on both region of aircraft flight and its performance characteristics (Table 2).
0 8640 25920
a
Fig. 2. Results of amplitude-frequency analyses of geomagnetic pseudostorm effect
f, mHz
b
Performance characteristics of aircrafts
Table 2
Aircraft Type Practical upper level, km Cruising speed, km/h Maximum speed, km/h
Il-96 12000 870 910
Boeing 767-300 12800 870 910
A 350-800 13100 903 945
F-15 20000 917 2650
Mig-31 20600 2500 3000
X-43A 30000 - 11230
So it is detected that amplitude-frequency range of geomagnetic pseudostorms is limited with 0-70000 nTesla by amplitude and with 0-3 mHz by frequency. That is at least three times bigger than traditional GMV.
Let's consider metal (Duralumin) fuselage of aircraft in variable magnetic field. According to Maxwell's principles [12] there is electromagnetic field of appropriate frequency and amplitude on board of aircraft. This field is initiated by geomagnetic pseudostorm effect.
6. CONCLUSION
On the basis of researched results it is possible to make conclusion that geomagnetic pseudostorms take place during aircraft flights. Their amplitude and frequency are much bigger than natural GMV amplitude-frequency parameters.
So it is assumed to extend traditional ranking of electromagnetic waves by the International Telecommunication Union (ITU) to the 0-3 Hz range, which is supposed to be named as "sub extremely low frequency range" (SELF).
However the problem of neutralization (screening) of negative geomagnetic pseudostorm influence to biological and technical objects and systems onboard of aircraft is still unsolved and insufficiently explored. It challenges a lot of new technical and scientific problems for modern industry.
REFERENCES
1. Воробьев А. В. Вопросы проектирования цифровых геомагнитных обсерваторий. Berlin: LAP Lambert Academic Publishing G mbh & Co. KG, 2012. С. 10-20. [ A. V. Vorobev, Problems of digital geomagnetic observatories development (in Russian). LAP Lambert Academic Publishing G mbh & Co. KG, Berlin, 2012, pp. 10-20. ]
2. Чижевский А. Л. Земное эхо солнечных бурь. М.: Мысль, 1976. С. 5-15. [ A. L. Chizhevsky, Earth echo of sun storms (in Russian), pp. 5-15. Moscow: Mysl, 1976. ]
3. Вернадский В. И. Биосфера и ноосфера. М.: Айрис Пресс, 2004. С. 32-42. [ V. I. Vernadsky, Biosphere and noosphere (in Russian), pp. 32-42. Moscow: Airis Press, 2004. ]
4. Бинги В. Н., Савин А. В. Физические проблемы действия слабых магнитных полей на биологические системы // УФН. 2003. Т. 173, № 3. С. 265-269. [ V. N. Bingi, A. V. Savin, "Physical problems of weak geomagnetic fields on biological systems," (in Russian), UFN, vol. 173, no. 3, pp. 265269, 2003. ]
5. Понаморенко Г. Н. Электромагнитотерапия и светолечение. СПб.: Мир и семья, 1995. С. 150-153 [ G. N. Pona-marenko, Elektromagnetotherapy and phototherapy (in Russian), pp. 150-153. St.-Petersburg: Mir I semiya, 1995. ]
6. Гурфинкель Ю. И. [и др.] Влияние геомагнитных возмущения на капиллярный кровоток у больных ишеми-ческой болезнью сердца // Биофизика. 1995. Т. 40, вып. 4.
С. 793-799 [ Yu. I. Gurphinkel, et al. An influence of geomagnetic variations on capillary blood flow in patients with coronary heart disease (in Russian), in Biophysika, vol. 40, no. 4, pp. 793-799, 1995. ]
7. Воробьев А. В. Моделирование и исследование эффекта геомагнитной псевдобури // Геоинформатика. 2013. № 1. С. 29-36 [ A. V. Vorobev, "Modeling and analyses of geomagnetic pseudostorm effect," (in Russian), Geo-informatica, no. 1, pp. 29-36, 2013. ]
8. Миловзоров Г. В., Воробьев А. В., Миловзоров Д. Г.
Методика описания параметров геомагнитной псевдобури // Вестник ИжГТУ. 2013. № 1. С. 103-107. [ G. V. Milovzorov, A. V. Vorobev, D. G. Milovzorov, "Methodics of geomagnetic pseudostorm parameters description," (in Russian), Vestnik IzhGTU, no. 1, pp. 103-107, 2013. ]
9. Воробьев А. В. Способ определения параметров невозмущенного геомагнитного поля в полевых условиях // Нефтегазовое дело. 2013. № 1. С. 71-80. [ A. V. Vorobev, "Method of undisturbed geomagnetic field detection," (in Russian), Neftegazovoe delo, no. 1, pp. 71-80, 2013. ]
10. Воробьев А. В. GEOmagnetic_v1.0: Свид. об офиц. рег. программы для ЭВМ № 2013610905. М.: РосПатент, 2013. [ A. V. Vorobev, Geomagnetic_v1.0, Certificate of official registration of program no. 2013610905, Moscow: RosPatent, 2013. ]
11. Воробьев А. В. О возможности применения анизотропных магниторезистивных сенсоров в геоинформационных магнитометрических системах // Приборы. 2012. № 1 (139). С. 10-16. [ A. V. Vorobev, "The possibility of using anisotropic magnetoresistive sensors in geographic magnetometric information systems," (in Russian), Prybory, no. 1 (139), pp. 10-16, 2012. ]
12. Воробьев А. В. Магнитные материалы и элементы электронных устройств. Уфа: УГАТУ, 2012. 154 с. [ A. V. Vor-obev, Magnetic materials and elements of electronic devices, (in Russian). Ufa: UGATU, 2012. ].
ABOUT AUTHORS
VOROBEV, Andrey Vladimirovich, Assoc. Prof., Dept. of Electronics and Biomedical Technologies, Dept. of Automated Systems. Master of Electronics & Microelectronics (UGATU, 2006). PhD (UGATU, 2009).
SHAKIROVA, Gulnara Ravilevna, Assoc. Prof., Dept. of Automated Systems. Dipl. Engineer on Automated Management Systems (UGATU, 2005). PhD (UGATU, 2008).
МЕТАДАННЫЕ
Название: Геоинформационная система расчета и регистрации параметров геомагнитной псевдобури. Авторы: А. Воробьев, Г. Шакирова.
Организации: ФГБОУ ВПО «Уфимский государственный
авиационный технический университет», Россия. Email: [email protected]. Язык: английский.
Источник: Вестник УГАТУ. 2014. Т. 18, № 5 (66). С. 62-67, ISSN 2225-2789 (Online), ISSN 1992-6502 (Print).
Аннотация: Предлагается новый подход к регистрации и расчету параметров геомагнитной псведобури. Термин «геомагнитная псевдобуря» рассматривается как воздействие геомагнитного поля на объект в условиях его существования в анизотропном магнитном поле при условии его перемещения с ненулевой скоростью. Описаны результаты эксперимента, демонстрирующего эффект геомагнитной псведобури на примере гражданского самолета, совершающего перелет по маршруту AA937 (American Airlines).
Ключевые слова: геоинформационная система; геомагнитная буря; геомагнитные псевдобури.
Об авторах:
ВОРОБЬЕВ Андрей Владимирович, доц., вед. науч. сотр. каф. автоматизированных систем управления. М-р по электронике и микроэлектронике (УГАТУ, 2006). Канд. техн. наук по инф.-изм. и упр. системам (УГАТУ, 2009). Иссл. в обл. геоинформ. магнитометрич. систем.
ШАКИРОВА Гульнара Равилевна, доц. той же каф. Дипл. инж.-с/техн. (УГАТУ, 2005). Канд. техн. наук по мат. и прогр. обесп. выч. машин, комплексов и комп. сетей (УГАТУ, 2008). Иссл. в обл. иерархич. моделей, сит. управления, веб-технологий.