№ 9 (102)
UNIVERSUM:
ТЕХНИЧЕСКИЕ НАУКИ
сентябрь, 2022 г.
FINITE ELEMENT ANALYSIS OF TRACK STRUCTURE
Nodirbek Kodirov
Doctoral student, Tashkent State Transport University, Republic of Uzbekistan, Tashkent Е-mail: nodir kodirov 95@mail.ru
Ozoda Mirzahidova
Assistant,
Tashkent State Transport University, Republic of Uzbekistan, Tashkent E-mail: ozoda_2 7@mail.ru
КОНЕЧНО-ЭЛЕМЕНТНЫЙ АНАЛИЗ ТРЕЙКОВОЙ СТРУКТУРЫ
Кодиров Нодирбек Бахтиер угли
докторант,
Ташкентский государственный транспортный университет Республика Узбекистан, г. Ташкент
Мирзахидова Озода Мирабдуллаевна
ассистент,
Ташкентский государственный транспортный университет Республика Узбекистан, г. Ташкент
АННОТАЦИЯ
Целью данной работы было изучение моделирования компонентов железнодорожного пути на основе трехмерных методов конечных элементов. Учитывая сложность, была создана модель. Выводы о методе и результатах представлены ниже. Предложения для будущих исследований также были представлены.
ABSTRACT
The purpose of this thesis was to study the modelling of railway track components based on three dimensional finite element methods. Considering the complexity, model was created. Conclusions about the method and results are presented below. Suggestions for future study also have been proposed.
Ключевые слова: ABAQUS,модель; напряжения, Фон Мизеса.
Keywords: ABAQUS, model; stress, Von Mises.
The purpose of the modeling is to study the static and dynamic properties of the railway track under the load. Several simulation calculations were conducted through commercial software ABAQUS/CAE to investigate the behaviors. The results from the finite element modeling in ABAQUS are presented in the below[1].
For studying purposes and analyzing, was chosen the point between two sleepers which coincides with increment number 17 and at the time t=0.658s.
Von Mises stress distribution
The fig. 1 below shows stress components at integration points, Stress Mises. The von Mises stress is often used in determining whether an isotropic and ductile metal will yield when subjected to a complex loading condition. By using software ABAQUS, it is easy to identify the value of von Mises stresses at the necessary points and at each increment.
Библиографическое описание: Kodirov N., Mirzahidova O.. FINITE ELEMENT ANALYSIS OF TRACK STRUCTURE // Universum: технические науки : электрон. научн. журн. 2022. 9(102). URL: https://7universum.com/ru/tech/archive/item/14253
№ 9 (102)
UNIVERSUM:
ТЕХНИЧЕСКИЕ НАУКИ
сентябрь, 2022 г.
Figure 1. Von Mises stress distribution
(Avg: 75%) —Г +3.144e+04 = - +2.882e+04
■ - +2.620e+04
■ - +2.358e+04
■ - +2.096e+04
■ - +1.834e+04
■ - +1.572e+04
■ - +1.310e+04
■ - +1.048e+04 9- +7.859e+03
+5.239e+03 — - +2.620e+03 —L +0.000e+00
Max: +3.144e+04 Elem: RAIL-1.2330 Node: 156 Min: +0.000e+00 Elem: SLEEPER-1.1 Node: 254
Step: Step-4, dynamic moving Increment 17: Step Time = 0.6585 Primary Var: S, Mises
npfnrmprl VAi-■ II npinrn-istinn CpaIP FA
Figure 2. Von Mises stress distribution (without wheel)
Graph 1. Max and min Von Mises stress for increment number 17 at the t=0,658s
Calculations show that the max Von Mises stress for the increment number 17 is coinciding for node N483 and the min Von Mises stress for the increment number 17 is node N492. By the graph it possible to observe the changing of Von Mises stress distribution. Stresses equal to o=21.3E+03 N/cm2 for node N483 N/cm2 and
o=4.40E+03 N/cm2. However, the node N483 gains the max stress value at the time t=0.7585s and equals to o=22.9E+03 N/cm2[2].
In the below figure is shown location of nodes with max and min stresses.
№ 9 (102)
UNIVERSUM:
ТЕХНИЧЕСКИЕ НАУКИ
сентябрь, 2022 г.
S, Mises (Avg: 75%) I—г +3.144е+04 Ы- +2.882е+04 В- +2.620е+04 +2.358е+04 PR- +2.096е+04 ВЦ +1.834е+04 ■- +1.572е+04 ■- +1.310е+04 Я- +1.048е+04 ■ - +7.859е+03 +5,239е+03
--+2.620е+03
—L +0.000е+00 Мах: +3.144е+04 Elem: RAIL-1.2330 Node: 156
Щ
щ
/ш
M
/ Direction of movemenl
contact /b mm
ODB: contact.odb AbaquAflbrfd^/d 6.14-2 Sun Dec 29 16:40:42 GMT+05:OT 2019
Step^Sip-4, dynamic rr,o . mg
Increment^Bgdrettg^ = 0.6585 * Primary Var: ^
Deformed Var: U ^Wfiwmation Sc^B^tor: +1.000e+00
Figure 3. Location of nodes with max and min Von Mises stresses
Maximum principal stress distribution
Von Mises is a theoretical measure of stress used to estimate yield failure criteria in ductile materials and is also popular in fatigue strength calculations (where it is
signed positive or negative according to the dominant Principal stress), whilst Principal stress is a more "real" and directly measurable stress[3].
slave surface
ODB: Job4slavechange .odb Abaqus/Standard 6.14-2 Sun Dec 22 20:18:42 GMT+05:00 2019
Step: Step-4, dynamic moving Increment 17: Step Time 0.6585 Primary Var: S, Max, PrtociMf
nefnrmpH Uar' I I nofni-matinn Far+nc -1-1 ndflci-l-nn
Figure 4. Maximum principal stress distribution
сентябрь, 2022 г.
Graph 2. Max and min Von Mises stress for increment number 17 at the t=0,658s
The values of the principle stress: for node N483 o=21.27E+03 N/cm2 and for node N1537 o=-0.175E+03 N/cm2.
Comparing the stress values of Von Mises and maximal principal at the nodes N483, we can find that the values are different.
Conclusion
During process were analyzed Von Mises stress, Maximum principal stress, Spatial displacement at nodes of rail and sleepers, contact forces between wheel and rail surfaces, contact normal forces and reaction forces arising at sleepers.
References:
1. Finite element analysis of railway track under vehicle dynamic impact and longitudinal loads. Zijian Zhang.
2. Кахаров З.В. ЖЕЛЕЗНОДОРОЖНАЯ КОНСТРУКЦИЯ ДЛЯ ВЫСОКОСКОРОСТНЫХ ДОРОГ //Главный редактор: Ахметов Сайранбек Махсутович, д-р техн. наук; Заместитель главного редактора: Ахмеднабиев Расул Магомедович, канд. техн. наук; Члены редакционной коллегии. - 2022. - С. 43.
3. Мирзахидова О.М. ПЕРСПЕКТИВЫ СТРОИТЕЛЬСТВА ЖЕЛЕЗНЫХ ДОРОГ В УЗБЕКИСТАНЕ // Академические исследования в области образовательных наук. - 2021. - Т. 2. - №. 2. - С. 1134-1138.