Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 5 (65)
ТРАНСПОРТНЕ БУД1ВНИЦТВО
UDC 624.191.3
V. D. PETRENKO1*, O. L. TIUTKIN2*, S. T. PROSKURNIA3*
i *
Dep. «Bridges and Tunnels», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 53, e-mail [email protected], ORCID 0000-0002-5902-6155
2*Dep. «Bridges and Tunnels», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 53, e-mail [email protected], ORCID 0000-0003-4921-4758
3*Main engineer of State Enterprise «Zachiddorvybuchprom», Ternopil, 46006, Gayova St., 47, e-mail [email protected]
FEATURES OF DRILLING-AND-BLASTING AT CONSTRUCTION OF BESKIDSKIY TUNNEL
Purpose. In this article it is necessary to analyze the possibility of developing technology and increasing its efficiency during the Beskidskiy tunnel construction in difficult engineering and geological conditions. Methodology. The authors have performed analysis of the technological level of mining and construction works, new technique, equipment and production. One of the important issues of blasting operation is to ensure the seismic safety, acting at a distance of 30 m in the axes of single-track tunnel, as the distance to it will be 20 m from the nearest charge in the laying tunnel. This problem was solved by applying the combined blasting of blast-hole charges with delay-action and long-delay ways. Herewith the total mass of charges in the stope was divided into three groups, in which the first group is exploded by short-delay firing with, and the second one is exploded by short-delay firing too with intervals of 200...400 ms, the third is exploded by long-delay blasting at intervals of 500... 10000 ms. The combined blasting of short-delay charges and delay action ones let significantly reduce seismic action at a mass explosion of charges when driving of double-track railway tunnel of a large cross-section. Findings. The paper presents the developed technology model, describing dependence of the machines from engineering and geological conditions. The methodology of drilling and blasting works at the construction of the tunnel callote and stross as well as a technique of arrangement determination and intervals of shot-delay and delay blasting of blasthole explosive charges was developed. Maximum permissible concentration of gases and vapours at blasting was presented. The calculations showed that the maximum level of gas contamination of the working area in Beskidskiy tunnel is achieved at blast operations. In accordance with this ventilation of the tunnel when driving is carried out by independent systems with mechanical ventilation by blowing using mine fans of special mining enterprises. Originality. The developed seismically safety charge masses are based on the well-known state about an-tiseismic blasting regulations. Practical value. The authors proposed and grounded the efficient technology for reduction to practice of drilling and blasting works (with dividing of the tunnel cross-section into the calotte and stross during of the Beskydy high-mountain tunnel construction. The results of technological experiment are presented.
Keywords: drilling and blasting works; technology of high-mountain tunnel constructing; railway tunnel; blast seismic; shot-delay and delay charges
Introduction
In contemporary environment the construction of railway tunnels has found a widespread application in difficult engineering and geological condi-
doi 10.15 802/stp2016/84127
tions. The most significant example of this building is the construction of basic Gotthard tunnel in the Alps, length of 57.3 km, completion is scheduled for 2016 [3]. A distinctive feature of tunneling
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 5 (65)
driving of such a type is the extensive use of tunnel boring machines in hard and strongest rocks.
However, drilling and blasting method for breaking rocks in the tunneling driving including the workings of large section can be successfully used in such conditions [14-16].
Purpose
In Ukraine, currently tunneling driving of Beskydskiy double-track tunnel in the Carpathians is being completed. It is under construction in order to increase rail logistics between Western and Eastern Europe with using tunnel. Its length is 1850 m. Alternation of rocks of different types and strength, including sandstone, siltstone and mud-stone with Protodyakonov scale of hardness respectively 6.. .8, 4.. .6 and 2.. .3 occurs in geological structure on construction sites. Hydro-geological conditions are characterized by the expected inflow of water in the range of 5.10 m3/day. Tunneling driving of double-track railway tunnel is carried out with the division of the face on calotte and stross with the way of lower ledge using drilling-and-blasting operations (DBO) [8] in to "bricked-up windows" with movement overlapping of trains in the Beskydskiy acting tunnel, located 30 meters away from the tunnel under construction. Moreover, the existing single-track tunnel was built in 1886.
Drilling operations are carried out when driving with the help of a self-propelled double beam electro-hydraulic unit "Sandvik DT 820-C" from Finland. At this the diameter of holes is 45 mm, and their length is 1.5; 2.3; 2.8 m when calotte driving and 4.2.4.5 m in stross development. Correspondingly stope length, depending on the engineering and geological conditions when calotte driving is 1.25, 2.0 and 2.5 m, and stross one -4.0.4.2 m.
Drilling of holes is produced by blowing with compressed air and water washing. Compressed air is supplied from the mobile compressor stations, located on near-entrance sites, and water via a pipeline that is laid as far as tunneling driving.
DBO nameplate is made at the stage of pre-production of works and refined accordingly to the results of at least three conducted test blastings [2, 11]. Breaking of rocks with blast-hole charges is provided to carry out using the method of successive contouring with mandatory application of de-
lay-action and long-delay blasting of blast-hole charges groups in the following order depending on the stope size, mentioned above: coal-cutting, contour-hole, under contour, contour, plantar and under-bottom. Deceleration time (interval between multiple-shot blasting) taking into account rock hardness is from 20 to 10000 ms.
For blasting, the following blasting explosives are applied: ammonite № 6 ZhV - for dry and flooded holes, Grammonit 79.21 - for dry holes, ammonal M5 - for dry and flooded holes, gremix -for dry and flooded holes. At this cartridges of 28.32 and 36 mm are used [9].
At complex blasting operating two ways of charges blasting are applied: non-electric and electric [9, 10]. The non-electric initiation system (NIS) «Impulse» is used at non-electrical method. It includes the UNS-SH and UNS-ShK devices, detonating cord (DC), a main waveguide, connecting tube and the starting device. Unlike traditional methods of initiating explosive charges BB, this system has an increased level of security, since, due to insensitivity and stray currents it allows carrying out drilling works without de-energizing of power equipment. In electric mode NIS system «Impulse», UNS-SH device, UNS-ShK, DC and two detonators, type ED-1-3-T are also applied.
Methodology
One of the important issues of blasting operation is to ensure the seismic safety, acting at a distance of 30 m in the axes of single-track tunnel, as the distance to it will be 20 m from the nearest charge in the laying tunnel [1, 4, 6, 7, 13].
Seismic safety charge masses for complex engineering structures, like undoubtedly Beskydskiy tunnel is, can be calculated by the formula according to the work [5],
Q,,=(Kr xe/Kg)pxr3,kg,
where Vcr - permissible critical velocity fluctuations, is determined from table 80 [5] and equal to Vcr = 20 sm/s ; e - coefficient depending on the conditions of work and the state of the engineering object is accepted within e = 1.5...3.0 ; p - coefficient, which depends on the distance to the object, and equals to p = 1.5...2.0; Kg - coefficient depending on the geological and engineering condi© V. D. Petrenko, O. L. Tiutkin, S. T. Proskurnia, 2016
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 5 (65)
tions of works production and equals to Kg = 200; r - distance to the protected object, r = 200 m .
Taking s = 2; p = 2.5 ; Kg = 200, as the result
a.s.=(20 X 2/200) X 203 = 143.1kg.
Consequently, there is a certain limit upon seismic at conducting of blasting operations with a maximum total charge BB on the stope when calotte driving of 163.5 kg.
Findings
Solving this problem was carried out by applying the combined blasting of blast-hole charges with delay-action and long-delay ways (Fig. 1).
At this the total mass of charges in the stope was divided into three groups, in which the first group is exploded by short-delay firing with slow intervals of 20.200 ms, and the second one is exploded by short-delay firing too with intervals of 200... 400 ms, the third is exploded by long-delay blasting at intervals of 500.10000 ms. The total mass of blast-hole charges, length of 1.3 m according to the 1st DBO nameplate is 57.75 kg, blast-hole charges, length of 2.3 m - the 2nd DBO nameplate - 124.3 kg, blast-hole charges, length of 2.3 m, the 3d DBO nameplate - 163.5 kg. The total mass of the charges of the 1st group, length of 1.3 m is 19.5 kg (33.8 %), length of 2.3 m - 27.5 kg (22.1 %) and a length of 2.8 m - 33 kg (20.2 %). Also, the charges mass of the 2nd group, length of 1.3 m is 6.5 kg (11.2%), length of 2.3 m - 13.75 kg
(11.1 %), length of 2.8 m - 16.5 kg (10.1 %). For charges of the 3rd group, length of 1.3 m charges mass is 31.75 kg (55.0 %), length of 2.3 m -83.05 kg (66.8 %) and a length of 2.8 m - 114 kg (69.7 %).
Thus, the maximum charges mass in groups are less than the maximum permissible under the terms of seismic safety.
As follows from the analysis of presented data in the first group of charges using short-delay blasting with intervals of 20.200 ms, wave interaction with the interference of longitudinal waves may occur. Charges blasting of the second group with an interval of 300. 400 ms is performed after 100 and 200 ms. During this period a longitudinal wave from the charges blasting of the first group at its speed in rocks with a hardness coefficient f = 2...8, equal to 2500.4000 m/s, will cover the distance from the blasting site of 250.400 m, namely the interaction of the waves and their interference are completely excluded.
Long-delay blasting of charges in the third group with intervals of 500.10000 ms will be performed with a significant margin in time and distance from the previous short-delay one. As a result the interaction of longitudinal waves in the subsequent blasting is completely excluded, which was confirmed by measuring the vibration velocity of rock in active tunnel, which were equal to 0.13.0.15 m/s.
Fig. 1. Circuit of the disposition and connection of explosive charges
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2016, № 5 (65)
Thus, the combined blasting of short-delay charges and delay action ones let significantly reduce seismic action at a mass explosion of charges when driving of double-track railway tunnel of a large cross-section.
Originality and practical value
The choice of a rational system of ventilation in face working is of great importance in these conditions. In accordance with current safety regulations [9] and classic work upon the tunnel ventilation [12] in workings, where people may be, the air must contain at least 20 % of oxygen (by volume) in its composition. Carbon dioxide content in the air of working at the places of operation should not exceed 0.5%, and in the working with a common upward current - 0.75 %. In addition the air in active underground workings must be free of harmful substances exceeding the maximum permissible concentration (MPC), indicated in Table 1.
In accordance with the Safety specifications the amount of air required for working ventilation, should be calculated upon the largest number of people employed at the same time in underground works, quantity of harmful gases, calculated on a notional carbon monoxide in blasting operations, upon harmful gases from arc welding operations, as well as of harmful substances released during
operation of machines and mechanisms with internal combustion engines.
The calculations showed that the maximum level of gas contamination of the working area in Beskidskiy tunnel is achieved at blasting operations, for which it is necessary to supply to the face of at least 165 m3/min of fresh air.
In accordance with this ventilation of the Beskidskiy tunnel when driving is carried out by independent systems with mechanical ventilation by blowing using mine the fans of "Donventilya-tor" enterprise. The main technical parameters of the fan are presented in Table 2.
Ventilation system operating principle is as follows. Airing face after blasting is carried out by air supply system from the Eastern portal with the help of an axial fan of the main airing, type IN-14-10D (Table 2) installed on near-entrance site. In the metal pipe with a diameter of 1600 mm made of sheet steel, thickness of 2 mm, fresh air is fed into the bottom-hole zone, which dilutes harmful gases and carries them over the working to the East portal. Along with plenum system also runs the local (near the face) exhaust system, which provides with CFT equipment (Kormann), de-dusting exhaust air before its release to the general air flow that moves over the working from the face up to the portal. As advance of face the air supply pipeline, consisting of 4 m long pipes, is increased (built up) to provide effective ventilation.
Table 1
Maximum permissible concentrations of harmful substances
Gases and vapours Chemical formula Maximum permissible concentration
% at volume mg/m3
Carbonic oxide CO 0,00240 20
Oxides of nitrogen in N2O3 equivalent - 0,00010 5
Sulfur dioxide SO2 0,00035 10
Hydrogen sulfide H2S 0,00066 10
Acrolein CH2=CH=CH=O 0,00008 0,2
Formaldehyde H2C=O 0,00037 0,5
Hydrocarbons in carbon equivalent - - 300
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зал!зничного транспорту, 2016, № 5 (65)
Table 2
The main technical parameters of fans
№ п/п Parameters of fans FA-14-10D VMEFA-12-110
1 Nominal impeller diameter, mm 1460 1200
2 Nominal feed, m3/s 35 32
3 Flow rate within the working zone, m3/s:
- minimum, no less 10 8
- maximum, no more 50 42
4 Maximum efficiency 0,83 0,74
5 Nominal full pressure, Pa 4700 2600
6 Revolutions per minute 1500 1500
7 Fan weight, kg 3650 2310
Conclusions
Thus, the high-level scientific and technical preparation of operational materials upon technol- 7. ogy penetration in the rocks in difficult engineering and geological conditions allows solving the problem of building the most complex railway artificial construction - Beskydskiy tunnel.
LIST OF REFERENCE LINKS
8.
1. Артемов, В. А. Методические основы оценки сейсмического действия массовых взрывов по результатам анализа сейсмовзрывных продольных и поверхностных волн / В. А. Артемов, Г. П. Парамонов, А. Н. Холодилов // Взрывное дело. - Москва, 2012. - № 108-65. -
С. 287-295. 9.
2. Безопасность буровзрывных работ в промышленности / под ред. Б. Н. Кутузова. - Москва : Недра, 1992. - 544 с.
3. В Швейцарии открыт самый длинный в мире железнодорожный тоннель: 57 км. [Electronic 10. resource]. Available at: https://geektimes.ru-/post/276720/. - Title from the screen. - Accessed
: 20.09.2016.
4. ДСТУ 4704: 2008. Проведення промислових 11. вибух1в. Норми сейсмiчноi безпеки. - Кшв : Держспоживстандарт Украши, 2009. - 11 с.
5. Кутузов, Б. Н. Разрушение горных пород взрывом : учеб. для вузов / Б. Н. Кутузов. - Москва 12. : Изд-во МГИ, 1992. - 516 с.
6. Петренко, В. Д. Аналiз аваршних ситуацш в тунелях, що споруджуються вибуховим способом / В. Д. Петренко, В. Т. Гузченко,
О. М. Кулаженко // Проблеми та перспективи розвитку залiзн. трансп. : тези 76 Мiжнар. на-ук.-техн. конф. / Дшпропетр. нац. ун-т залiзн. трансп. - Дншропетровськ, 2016. - С. 184-185. Петренко, В. Д. Зниження сейсмiчноi ди при пвдриванш короткоуповшьнених та уповшь-нених зарядiв / В. Д. Петренко, О. Л. Тютьшн, С. Т. Проскурня // Проблеми та перспективи розвитку залiзн. трансп. : тези 76 Мiжнар. на-ук.-техн. конф. / Дшпропетр. нац. ун-т залiзн. трансп. - Дншропетровськ , 2016. - С. 192-194. Петренко, В. Д. Розробка комплексу буровибу-хових робгг при проходщ Бесшдського тунелю / В. Д. Петренко, М. В. Гершч, В. В. Барашшн // Проблеми та перспективи розвитку залiзн. трансп. : тези 76 Мiжнар. наук.-техн. конф. / Дшпропетр. нац. ун-т залiзн. трансп. - Дншропетровськ, 2015. - С. 286-287. Полянкин, Г. Н. Буровзрывные работы в тоннелестроении : учеб. для вузов ж.-д. трансп. / Г. Н. Полянкин. - Москва : ГОУ «Учеб.-метод. центр по образованию на ж.-д. трансп.», 2007. - 375 с.
Способи шщшвання зарядiв вибухових речо-вин : навч. поаб. / В. В. Соболев, А. В. Чернай, В. М. Чебенко, О. В. Скобенко. - Дшпро-петровскьк : ЛiзуновПрес, 2013. - 88 с. Справочник взрывника / Б. Н. Кутузов, В. М. Скоробогатов, И. Е. Ерофеев [и др.] / под общ. ред. Б. Н. Кутузова. - Москва : Недра, 1988. - 511 с.
Фомичев, В. И. Вентиляция тоннелей и подземных сооружений / В. И. Фомичев. - Ленинград : Стройиздат, Ленингр. отделение, 1991. -200 с.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2016, № 5 (65)
13. Эстеров, Я. Х. Буровзрывные работы на транспортном строительстве : учеб. для техникумов / Я. Х. Эстеров, Е. Ю. Бродов, М. И. Иванаев. -Москва : Транспорт, 1983. - 328 с.
14. Boidy, E. Rock analysis of time-dependent behavior of a test gallery in claystone / E. Boidy, A. Bouvard, F. Pellet // Tunneling and Underground Space Technology. - 2002. - Vol. 17. - Iss. 4. -P. 415-424. doi: 10.1016/s0886-7798(02)00066-4.
15. Erion, P. Construction Time Analysis For Different Steps In Drill - And - Blast Method Of Hydro
Power Tunnel Excavation / P. Erion, A. Algest // J. of Engineering Research and Applications. -Vol. 5. - Iss. 1 (Part 1). - 2015. - P. 95-101.
16. Patnik, K. K. Uncertainty analysis of tunnel squeezing for two tunnel cases from Nepal Himalaya / K. K. Patnik, B. Nirsen // Intern. J. of Rock Mechanics and Mining Sciences. - 2007. -Vol. 44. - Iss. 1. - P. 67-76. doi: 10.1016/j.ijrm-ms.2006.04.013.
В. Д. ПЕТРЕНКО1*, О. Л. ТЮТЬК1Н2*, С. Т. ПРОСКУРНЯ3*
1 Каф. «Мости i тунелЬ>, Дтпропетровський нацюнальний ушверситет зарничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Дтпро, Украша, 49010, тел. +38 (056) 373 15 53, ел. пошта [email protected], СЖСГО 0000-0002-5902-6155
2*Каф. «Мости i тунелЬ», Дтпропетровський нацюнальний ушверситет затзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Дтпро, Украша, 49010, тел. +38 (056) 373 15 53, ел. пошта [email protected], ШСГО 0000-0003-4921-4758
3*Держ. тдприемство «Захвддорвибухпром», вул. Гайова, 47, Тернотль, 46006, ел. пошта [email protected]
ОСОБЛИВОСТ1 КОМПЛЕКСУ БУРОВИБУХОВИХ РОБ1Т ПРИ БУД1ВНИЦТВ1 БЕСКИДСЬКОГО ТУНЕЛЮ
Мета. В статл необхщно проаналiзувати можливють розробки технологи проведения буровибухових робГт та шдвищення И ефективносл при будiвництвi Бескидського тунелю в складних шженерно-геолопчних умовах. Методика. Автори виконали аиалiз техшчного рiвня гiрських i будiвельиих робГт, ново! техиiки, обладнання та виробництва. Використовувалось запропоноване забезпечення системою безпеки тунелю, який експлуатуеться (враховуючи, що вiдстаиь до нього 20 м ввд найближчого заряду в споруджу-ваному туиелi). Для цього була запропонована система комбiиованого вибуху шпурових зарядiв коротко-уповiльиеиим i уповГльненим способами. Враховано, що загальна маса зарядiв у заходцi була роздшена на три групи, в яких перша i друга групи щдриваються короткоуповiльиеио, з iитервалами уповiльиеиия 20.200 мс та 200.400 мс вщповщно, i третя - уповiльиеио, з штервалами 500.10 000 мс. Застосування цiei системи iстотио знизило сейсмiчну дiю масового вибуху зарядiв при проходщ двоколiйиого залГзнично-го тунелю великого поперечного перетину. Результати. В статл представлена розроблена технолопчна модель, що описуе залежиiсть техшки вiд iнженерних та геологiчних умов. Була розроблена методолопя про-ведення буровибухових робгт при будiвництвi калоти i штроси, а також техшка визначення та улаштування iнтервалiв короткоуповiльненого Г уповiльненого пiдриваиня шпурових зарядiв вибухових речовин. Представлена максимально допустима концентращя газГв Г парГв при вибуху. Розрахунки показали, що максима-льний рГвень забруднення газами робочо! зони в Бескидському тунелГ досягаеться при вибухових процесах. ВГдповГдно до цього, при вентиляцп тунелю, коли проходка виконуеться по незалежним системам Гз мехаш-чною вентилящею шляхом дуття, використовують шахтт вентилятори спещалГзованих прських тдпри-емств. Наукова новизна. Розроблеш сейсмобезпечт зарядт маси базуються на добре вщомому положенш про аитисейсмiчне пiдриваиия. Практична значимкть. Авторами запропонована та обгрунтована ефектив-на технололя проведення буровибухових робгт (Гз роздшенням поперечного перерГзу тунелю на калоту Г штросу) при прокладанш високопрного Бескидського тунелю. Представлен результати технолопчних екс-перименлв.
Ключовi слова: буровибуховГ роботи; технололя проходки високопрного тунелю; залГзничний тунель; вибухова сейсмжа; короткоуповшьнет та уповшьнет заряди
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 5 (65)
ТРАНСПОРТНЕ БУД1ВНИЦТВО
В. Д. ПЕТРЕНКО1*, А. Л. ТЮТЬКИН2*, С. T. ПРОСКУРНЯ3*
1 Каф. «Мосты и тоннели», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 15 53, эл. почта [email protected], ORCID 0000-0002-5902-6155
2*Каф. «Мосты и тоннели», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 15 53, эл. почта [email protected], ORCID 0000-0003-4921-4758
3*Гос. предприятие «Западдорвзрывпром», ул. Гаевая, 47, Тернополь, 46006, эл. почта [email protected]
ОСОБЕННОСТИ КОМПЛЕКСА БУРОВЗРЫВНЫХ РАБОТ ПРИ СТРОИТЕЛЬСТВЕ БЕСКИДСКОГО ТОННЕЛЯ
Цель. В статье необходимо проанализировать возможность разработки технологии и повышения ее эффективности при строительстве Бескидского тоннеля в сложных инженерно-геологических условиях. Методика. Авторы выполнили анализ технического уровня горных и строительных работ, новой техники, оборудования и производства. Использовалось предлагаемое обеспечение системой безопасности тоннеля, который эксплуатируется (учитывая, что расстояние до него 20 м от ближайшего заряда в строящемся тоннеле). Для этого была предложена система комбинированного взрыва зарядов короткозамедленным и замедленным способами. Учтено, что общая масса зарядов в заходке была разделена на три группы, в которых первая и вторая группы подрываются короткозамедленно с интервалами замедления 20.200 мс и 200.400 мс соответственно, и третья - замедленно, с интервалами 500.10000 мс. Применение этой системы существенно снизило сейсмическое воздействие массового взрыва зарядов при проходке двухпутного железнодорожного тоннеля большого поперечного сечения. Результаты. В статье представлена разработанная технологическая модель, описывающая зависимость техники от инженерных и геологических условий. Разработана методология проведения буровых и взрывных работ при строительстве каллоты и штроссы тоннеля, а также техника определения расстановки и интервалов короткозамедленного и замедленного взрывания шпуровых зарядов взрывных веществ. Представлена максимально допустимая концентрация газов и паров при взрыве. Расчеты показали, что максимальный уровень загрязнения газами рабочей зоны в Бескидском тоннеле достигается при взрывных процессах. Соответственно этому, вентиляция тоннеля, когда проходка выполняется по независимым системам с механической вентиляцией путем продувки, выполняется с использованием шахтных вентиляторов специализированных горных предприятий. Научная новизна. Разработанные сейсмобезопасные зарядные массы основаны на хорошо известном положении об антисейсмическом взрывании. Практическая значимость. Авторами предложена и обоснована эффективная технология внедрения в практику буровзрывных работ (с разделением поперечного сечения тоннеля на калотту и штроссу) при прокладывании высокогорного Бескидского тоннеля. Представлены результаты технологических экспериментов.
Ключевые слова: буровзрывные работы; технология проходки высокогорного тоннеля; железнодорожный тоннель; взрывная сейсмика; короткозамедленные и замедленные заряды
REFERENCES
1. Artemov V.A., Paramonov G.P., Kholodilov A.N. Metodicheskiye osnovy otsenki seysmicheskogo deystviya massovykh vzryvov po rezultatam analiza seysmovzryvnykh prodolnykh i poverkhnostnykh voln [Methodical foundations of seismic action estimation of mass explosions upon the analysis results of seismic explosion longitudinal and surface waves]. Vzryvnoye delo - Blasting Work, 2012, no. 108-65, pp. 287-295.
2. Kutuzov B.N. Bezopastnost burovzryvnykh rabot v promyshlennosti [Drilling-and-blasting safety in industry]. Moscow, Nedra Publ., 1992. 544 p.
3. V Shveytsarii otkryt samyy dlinnyy v mire zheleznodorozhnyy tonnel: 57 km (The world's longest railway tunnel has been opened in Switzerland: 57 km.). Available at: https://geektimes.ru/post/276720/ (Accessed 20 September 2016).
4. DSTU 4704: 2008. Provedennia promyslovykh vybukhiv. Normy seismichnoi bezpeky [State Standard 4704: 2008. Conducting of industrial explosions. The norms of seismic security]. Kyiv, Derzhspozhyvstandart Ukrainy Publ., 2009. 11 p.
HayKa Ta nporpec TpaHcnopTy. BÎCHHK .OHmponeTpoBCLKoro Ha^oHartHoro yHÎBepcHTeTy 3a^Î3HHHHoro TpaHcnopTy, 2016, № 5 (65)
5. Kutuzov B.N. Razrusheniyegornykhporodvzryvom [Destruction of rocks by explosion]. Moscow, MGI Publ., 1992. 516 p.
6. Petrenko V.D., Huzchenko V.T., Kulazhenko O.M. Analiz avariinykh sytuatsii v tuneliakh, shcho sporudzhui-utsia vybukhovym sposobom [Analysis of accidents in tunnels, constructed by an explosive way]. Tezy 76 Mizhnarodnoi naukovo-tekhnichnoi konferentsii «Problemy ta perspektyvy rozvytku zaliznychnoho transportu» [Proc. of 76th Sci. and Technical Conference «Problems and prospects of railway transport development»]. Dnipropetrovsk, 2016, pp. 184-185.
7. Petrenko V.D., Tiutkin O.L., Proskurnia S.T. Znyzhennia seismichnoi dii pry pidryvanni korotkoupovilnenykh ta upovilnenykh zariadiv [Reducing seismic action at blasting of short delayed and delayed charges]. Tezy 76 Mizhnarodnoi naukovo-tekhnichnoi konferentsii «Problemy ta perspektyvy rozvytku zaliznychnoho transportu» [Proc. of 76th Sci. and Technical Conference «Problems and prospects of railway transport development»]. Dnipropetrovsk, 2016, pp. 192-194.
8. Petrenko V.D., Hernich M.V., Barashkin V.V. Rozrobka kompleksu burovybukhovykh robit pry prokhodtsi Beskidskoho tuneliu [Development of drilling and blasting works while driving the Beskydskiy tunnel]. Tezy 76 Mizhnarodnoi naukovo-praktychnoi konferentsii «Problemy ta perspektyvy rozvytku zaliznychnoho trans-portu» [Proc. of 75th Sci. and Practical Conference «Problems and prospects of railway transport development»]. Dnipropetrovsk, 2015, pp. 286-287.
9. Polyankin G.N. Burovzryvnyye raboty v tonnelestroyenii [Drilling and blasting works in tunnel construction.]. Moscow, GOU «Uchebno-metodicheskiy tsentr po obrazovaniyu na zheleznodorozhnom transporte» Publ., 2007. 375 p.
10. Soboliev V.V., Chernai A.V., Chebenko V.M., Skobenko O.V. Sposoby initsiiuvannia zariadiv vybukhovykh rechovyn [Methods for initiating explosive charges]. Dnipropetrovskk, LizunovPres Publ., 2013. 88 p.
11. Kutuzov B.N., Skorobogatov V.M., Yerofeyev I.Ye. Spravochnik vzryvnika [Handbook of the shot-firer]. Moscow, Nedra Publ., 1988. 511 p.
12. Fomichev V.I. Ventilyatsiya tonneley i podzemnykh sooruzheniy [Ventilation of tunnels and underground structures]. Leningrad, Stroyizdat Publ., 1991. 200 p.
13. Esterov Ya.Kh., Brodov Ye.Yu., Ivanayev M.I. Burovzryvnyye raboty na transportnom stroitelstve [Drilling-and-blasting works on the transport construction]. Moscow, Transport Publ., 1983. 328 p.
14. Boidy E., Bouvard A., Pellet F. Rock analysis of time-dependent behavior of a test gallery in claystone. Tunneling and Underground Space Technology, 2002, vol. 17, issue 4, pp. 415-424. doi: 10.1016/s0886-7798(02)00066-4.
15. Erion P., Algest A. Construction Time Anal-ysis For Different Steps In Drill - And - Blast Method Of Hydro Power Tunnel Excavation. Journal of Engineering Research and Applications, 2015, vol. 5, issue 1 (Part 1), pp. 95-101.
16. Patnik K.K., Nirsen B. Uncertainty analysis of tunnel squeezing for two tunnel cases from Nepal Himalaya.
International Journal of Rock Mechanics and Mining Sciences, 2007, vol. 44, issue 1, pp. 67-76. doi: 10.1016/j.ijrmms.2006.04.013.
Prof. M. I. Netesa, Dr. Sc. (Tech.) (Ukraine); Prof. E. I. Efremov, Dr. Sc. (Tech.) (Ukraine)
recommended this article to be published
Received: March 22, 2016
Accepted: July 20, 2016