Научная статья на тему 'Facile synthesis of phenolic derivatives, containig lactamomethyl substituents'

Facile synthesis of phenolic derivatives, containig lactamomethyl substituents Текст научной статьи по специальности «Химические науки»

CC BY
45
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ORGANIC SYNTHESIS / PHENOLS / LACTAMS / AMIDOMETHYLATION / ОРГАНИЧЕСКИЙ СИНТЕЗ / ФЕНОЛЫ / ЛАКТАМЫ / АМИДОМЕТИЛИРОВАНИЕ

Аннотация научной статьи по химическим наукам, автор научной работы — Vorobyev Stepan V., Primerova Olga V., Ivanova Ludmila V., Ryabov Vladimir D., Koshelev Vladimir N.

In this work we suggest the new method for the synthesis of novel phenolic derivatives, containing lactamomethyl substituents. Oxidation processes of fuels and mineral oils lead to losing of their properties, so the search for new and effective inhibitors of these processes is very actuel. We suggest a facile system for lactamomethylation reaction. Heating in the water some of phenols (resorcinol, phloroglucinol, methylphloroglucinol, pyrogallol, salicylic, resorcilic and gallic acids) with N-hydroxymethyl derivatives of pyrrolidone, valerolactam, caprolactam and 4-phenylpyrrolidone in the presence of catalytic amounts of acetic acid led to the target compounds with nearly quantitative yields. Time of the reaction ranged 1.5-2 h. As the products have low solubility in water, in contrast with the reagents, filtration was used for their extraction. The advantages of this method are also that it is eco-friendly because of small amounts of wastes and low toxicity of the reagents and solvent, and cheapness of starting compounds. Eighteen novel compounds were obtained. The composition of target substances was determined by elemental analysis whereas the structures of the synthesized compounds were confirmed by FT-IR spectroscopy methods, 1H- and 13C-NMR spectroscopy. In IR spectra there are carbonyl group stretching vibrations peaks in lower frequencies (about 1600 cm-1) than expected due to the formation of inter- and intramolecular hydrogen bonds between this group and phenolic hydroxyl group.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ДОСТУПНЫЙ СИНТЕЗ ПРОИЗВОДНЫХ ФЕНОЛОВ, СОДЕРЖАЩИХ ЛАКТАМОМЕТИЛЬНЫЕ ЗАМЕСТИТЕЛИ

В данной работе нами предложен метод синтеза новых соединений, которые являются производными фенолов, содержащих лактамометильные заместители. Процессы окисления топлив и масел приводят к ухудшению их эксплуатационных свойств, поэтому актуальность работы обусловлена необходимостью поиска эффективных ингибиторов этих процессов. Нами предложена простая система для проведения реакции лактамометилирования. В результате нагревания фенолов (резорцина, флороглюцина, метилфлороглюцина, пирогаллола, салициловой, β-резорциловой и галловой кислот) с N-гидроксиметильными производными пирролидона, валеролактама, капролактама и 4-фенилпирролидона в воде в присутствии каталитических количеств уксусной кислоты были получены целевые продукты с высокими выходами, близкими (для ряда соединений) к количественным. Время реакции составляло 1,5-2 ч. В отличие от реагентов целевые соединения обладают низкой растворимостью в воде, поэтому для выделения продуктов реакции используется фильтрация. К достоинствам метода можно отнести его экологичность, так как используемые реагенты и растворитель малотоксичны, а в процессе синтеза практически не образуется отходов, малое время реакции, а также доступность и дешевизну исходных соединений. Было получено 18 неописанных ранее соединений. Состав всех полученных веществ установлен с помощью элементного анализа, структуры синтезированных соединений доказаны методами ИК-Фурье спектроскопии, 1Н- и 13С-ЯМР спектроскопии. В ИК-спектрах продуктов характеристичная полоса поглощения валентных колебаний карбонильной группы (-С=О) смещена в несколько меньшую (около 1600 см-1) область по сравнению с ожидаемой. Это обусловлено образованием внутри- и межмолекулярных водородных связей этой группы с гидроксильной группой фенола.

Текст научной работы на тему «Facile synthesis of phenolic derivatives, containig lactamomethyl substituents»

ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. Т 62 (10)_Серия «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»_2019

IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII V 62 (10) KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 2019

RUSSIAN JOURNAL OF CHEMISTRY AND CHEMICAL TECHNOLOGY

DOI: 10.6060/ivkkt.20196210.5930 УДК: 547.565+547-318

ДОСТУПНЫЙ СИНТЕЗ ПРОИЗВОДНЫХ ФЕНОЛОВ, СОДЕРЖАЩИХ ЛАКТАМОМЕТИЛЬНЫЕ ЗАМЕСТИТЕЛИ

С.В. Воробьев, О.В. Примерова, Л.В. Иванова, В.Д. Рябов, В.Н. Кошелев

Степан Владимирович Воробьев *

НОЦ химии и технологии углеводородов, Российский государственный университет нефти и газа (национальный исследовательский университет) им. И.М. Губкина, Ленинский просп., 65, Москва, Российская Федерация, 119991 E-mail: [email protected]*

Ольга Вячеславовна Примерова, Людмила Вячеславовна Иванова, Владимир Дмитриевич Рябов, Владимир Николаевич Кошелев

Кафедра органической химии и химии нефти, Российский государственный университет нефти и газа (национальный исследовательский университет) им. И.М. Губкина, Ленинский просп., 65, Москва, Российская Федерация, 119991

E-mail: [email protected], [email protected], [email protected]

В данной работе нами предложен метод синтеза новых соединений, которые являются производными фенолов, содержащих лактамометильные заместители. Процессы окисления топлив и масел приводят к ухудшению их эксплуатационных свойств, поэтому актуальность работы обусловлена необходимостью поиска эффективных ингибиторов этих процессов. Нами предложена простая система для проведения реакции лактамомети-лирования. В результате нагревания фенолов (резорцина, флороглюцина, метилфлороглю-цина, пирогаллола, салициловой, p-резорциловой и галловой кислот) с N-гидроксиметиль-ными производными пирролидона, валеролактама, капролактама и 4-фенилпирролидона в воде в присутствии каталитических количеств уксусной кислоты были получены целевые продукты с высокими выходами, близкими (для ряда соединений) к количественным. Время реакции составляло 1,5-2 ч. В отличие от реагентов целевые соединения обладают низкой растворимостью в воде, поэтому для выделения продуктов реакции используется фильтрация. К достоинствам метода можно отнести его экологичность, так как используемые реагенты и растворитель малотоксичны, а в процессе синтеза практически не образуется отходов, малое время реакции, а также доступность и дешевизну исходных соединений. Было получено 18 неописанных ранее соединений. Состав всех полученных веществ установлен с помощью элементного анализа, структуры синтезированных соединений доказаны методами ИК-Фурье спектроскопии, 1Н- и 13С-ЯМР спектроскопии. В ИК-спектрах продуктов характеристичная полоса поглощения валентных колебаний карбонильной группы (-С=О) смещена в несколько меньшую (около 1600 см1) область по сравнению с ожидаемой. Это обусловлено образованием внутри- и межмолекулярных водородных связей этой группы с гид-роксильной группой фенола.

Ключевые слова: органический синтез, фенолы, лактамы, амидометилирование

FACILE SYNTHESIS OF PHENOLIC DERIVATIVES, CONTAINIG LACTAMOMETHYL SUBSTITUENTS

S.V. Vorobyev, O.V. Primerova, L.V. Ivanova, V.D. Ryabov, V.N. Koshelev

Stepan V. Vorobyev*

Research and Academic Center "Chemistry and Technology of Hydrocarbons", Gubkin Russian State University of Oil and Gas (National Research University), Leninsky ave, 65, Moscow 119991, Russia E-mail: [email protected]*

Olga V. Primerova, Ludmila V. Ivanova, Vladimir D. Ryabov, Vladimir N. Koshelev

Department of Organic and Petroleum Chemistry, Gubkin Russian State University of Oil and Gas (National

Research University), Leninsky ave., 65, Moscow, 119991, Russia

E-mail: [email protected], [email protected], [email protected]

In this work we suggest the new method for the synthesis of novel phenolic derivatives, containing lactamomethyl substituents. Oxidation processes of fuels and mineral oils lead to losing of their properties, so the search for new and effective inhibitors of these processes is very actuel. We suggest a facile system for lactamomethylation reaction. Heating in the water some ofphenols (resorcinol, phloroglucinol, methylphloroglucinol, pyrogallol, salicylic, resorcilic and gallic acids) with N-hydroxymethyl derivatives of pyrrolidone, valerolactam, caprolactam and 4-phenylpyrroli-done in the presence of catalytic amounts of acetic acid led to the target compounds with nearly quantitative yields. Time of the reaction ranged 1.5-2 h. As the products have low solubility in water, in contrast with the reagents, filtration was used for their extraction. The advantages of this method are also that it is eco-friendly because of small amounts of wastes and low toxicity of the reagents and solvent, and cheapness of starting compounds. Eighteen novel compounds were obtained. The composition of target substances was determined by elemental analysis whereas the structures of the synthesized compounds were confirmed by FT-IR spectroscopy methods, 1H- and 13C-NMR spectroscopy. In IR spectra there are carbonyl group stretching vibrations peaks in lower frequencies (about 1600 cm1) than expected due to the formation of inter- and intramolecular hydrogen bonds between this group and phenolic hydroxyl group.

Key words: organic synthesis, phenols, lactams, amidomethylation Для цитирования:

Воробьев С.В., Примерова О.В., Иванова Л.В., Рябов В.Д., Кошелев В.Н. Доступный синтез производных фенолов, содержащих лактамометильные заместители. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 10. С. 40-48 For citation:

Vorobyev S.V., Primerova O.V., Ivanova L.V., Ryabov V.D., Koshelev V.N. Facile synthesis of phenolic derivatives, con-tainig lactamomethyl substituents. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2019. V. 62. N 10. P. 40-48

INTRODUCTION

Phenols, the widespread compounds in nature, are important bioactive substances. They reveal [1, 2] anti-inflammatory and antiseptic properties. Due to their antioxidant effect they can struggle against oxida-tive stress, which considered to be the cause of various diseases [3]. It was estimated that phenols possess antitumor activity against some varieties of cancer [4, 5] and can be used in complex oncology treatment. The most active compounds are polyphenols - resveratrol

[6-9], quercetin [10], dihydroquercetin [11, 12], and some others.

Several effective antioxidants were synthesized in previous investigations that had been carried out at the department of Organic and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). They contain the fragment of sterically hindered phenol and heterocy-clic substituent [13-15]. The latter may be a lactam, the compounds of great interest due to their wide spectra of bioactivity [16, 17]. However, there are few works dedicated to the synthesis of such compounds [18].

RESULTS AND DISCUSSION

In works [19, 20] we described lactamomethyl derivatives of alkylphenols and diphenolic compounds. Target substances were synthesized according to Tscherniak-Einhorn reaction using chloroform as solvent and trifluoroacetic acid as catalyst with moderate yields (40-60%). We suggest more effective system, "water - acetic acid". Using this procedure we can isolate products by filtration, because the solubility of reagents in water is higher, than one of products. The

R\

I

CH2OH 1-4

R1= -H, -СбН5; R2= -H, -OH, -COOH; R3= -H, -OH; R4= -H, -CH3, -OH, -COOH; n= 1-3

The structure and composition of the products were confirmed by modern methods of physicochemi-cal analyses. Noteworthy, that in IR spectra the car-bonyl group (C=O) peaks are in lower frequencies zone (about 1600 cm-1) than expected due to the formation of hydrogen bonds with nearby hydroxyl group of corresponding phenol.

EXPERIMENTAL PART

IR spectra were recorded on an Agilent Carry 600 spectrometer equipped with an attenuated total reflectance (ATR) device. The 1H and 13C NMR spectra were measured at room temperature on Bruker DPX-300 (1H, 300 MHz; 13C, 75 MHz) in DMSO-d6 in a pulse mode followed by Fourier transform and 2H resonance stabilization (RTU). The melting points were determined on a Stuart SMP30 instrument. Elemental analyses were carried out on a Vario MicroCube.

Resorcinol, phloroglucinol, pyrogallol, salicylic and gallic acids, pyrrolidone, valerolacam, capro-

advantages of this method are also its eco- friendliness, as the reagents and solvent are low-toxic and the synthesis produces small amounts of wastes.

By interaction of N-hydroxymethyl derivatives of pyrrolidone (1), valerolactam (2), caprolactam (3) or 4-phenylpyrrolidone (4) with phenols - resor-cinol (5), phloroglucinol (6), methylphloroglucinol (7), which synthesis was described in work [21], pyrogallol (8), salicylic (9), p-resorcilic (10) and gallic (11) acids - the products of substitution were obtained.

lactam, 4-phenylpyrrolidone and acetic acid were commercial products (Acros and Sigma-Aldrich). p-resorcilic acid (10), 1-hydroxymethylpyrrolidone-2 (1), 1-hydroxymethylpiperidone-2 (2), 1-hydroxy-methylazepanone-2 (3) h 1-hydroxymethyl-4-phe-nylpyrrolidone-2 (4) were synthesized according to corresponding procedures [22, 23]. Constants, yields, elemental analysis data and spectral characteristics are shown in tables 1, 2. For elemental analysis data calculated values are given in the top line, found values are given in bottom line.

General procedure for preparation of lactamomethyl derivatives of phenols

To a solution of 0.01 mol of corresponding phenol in water (20 ml), 1-hydroxymethyllactam (0.01 mol) and 2 ml of acetic acid were added. The mixture was re-fluxed for two hours. The solution was allowed to cool; the obtained precipitate was filtered and washed with water.

26-29

Scheme Схема

OH

5-11

Table 1

Yields and physical-chemical properties of compounds 12-29

1 2 3 4 5 6 7 8

22 YW Oh o 234 °С (ethanol) C12H13NO5 57.37 5.22 5.58 62

57.02 5.51 5.51

23 0 oh 170 °С (ethanol) C14H17NO5 60.21 6.14 5.02 41

60.01 6.28 5.07

24 OH HO^L^OH VW COOH 0 220 °С (ethanol -ether) C12H13NO6 53.93 4.90 5.26 53

53.51 5.17 5.05

25 OH HO^X/OH /--4 COOH O 217 °С (ethanol -water) C14H17NO6 56.94 5.80 4.74 55

57.03 5.91 4.65

26 oh o Xro ho^ ^oh p o 218 °С (ethanol) C16H20N2O5 59.99 6.29 8.74 71

59.69 6.83 8.24

27 OH 0 il^N' | 0<O 147-149 °С (ethanol) C18H24N2O5 62.05 6.94 8.04 69

61.76 7.13 7.96

28 1H ^L jO 230 °С (isopropanol) C20H28N2O5 63.81 7.50 7.44 77

63.58 7.66 7.40

29 OH O XX X на oh \ 1 Ph p-Ph O 140-142 °С (isopropanol) C28H28N2O5 71.17 5.97 5.93 65

71.03 6.11 5.88

Table 2

Spectral data for compounds 12-29

12-29

Compound IR spectrum (solid phase, v, cm 1), stretching vibrations of C=O group 1H NMR spectrum, 5, ppm, 3Jhh, Hz 13С NMR spectrum, 5, ppm

1 2 3 4

12 1634 1.87 (m, 2H, 4-C CH2 in lactam); 2.24 (t, 2H, 3-C CH2 in lactam, J = 7.83); 3.23 (m, 2H, 5-C CH2 in lactam); 4.19 (s, 2H, NCHAr); 6.18-6.84 (m, 3H, Ar), 9.20 (bs, 1H, OH); 9.37 (s, 1H, OH). 17.41; 30.48 (2 carbon atoms of lactamic ring); 40.54 (NCHAr); 46.61 (NCH2 in lactam); 102.69; 106.44; 113.55; 130.28; 156.33; 157.85 (6 Ar); 174.32 (C=O)

13 1599 1.67 (m, 4H, 4,5-CH2 in lactam); 2.26 (m, 2H, 3-C CH2 in lactam); 3.23 (m, 2H, 6-C CH2 in lactam); 4.28 (s, 2H, NCH2 Ar); 6.16-6.90 (m, 3H, Ar), 9.23 (bs, 1H, OH); 9.70 (bs, 1H, OH). 21.10; 22.89; 32.09 (3 carbon atoms of lactamic ring); 45.70 (NCH2A); 47.50 (NCH2 in lactam); 103.36; 106.75; 114.18; 131.15; 157.00; 158.54 (6 Ar); 170.38 (C=O).

14 1610 1.51-1.66 (m, 6H, 4,5,6-CH2 in lactam); 2.44 (t, 2H, 3-C CH2 in lactam, J = 6.83); 3.37 (m, 2H, 7- C CH2 in lactam); 4.85 (s, 2H, NCH2 Ar); 6.16-6.19 (m, 3H, Ar), 9.14 (bs, 2H, OH). 23.48; 28.47; 29.61; 36.81 (4 carbon atoms of lactamic ring); 47.68 (NCHAr); 56.90 (NCH2 in lactam); 102.97; 106.68; 130.16; 158.91 (6 Ar); 176.53 (C=O).

15 1620 1.85 (s, 3H, CHs-Ar); 1.92 (p, 2H, 3-CH2 in lactam, J = 7.1); 2.28 (t, 2H, C(O)CH7, J = 7.68); 3.44 (t, 2H, NCH2, J = 6.95); 4.18 (s, 2H, ArCH); 5.95 (s, 1H, Ar); 8.97 (bs, 1H, OH); 9.12 (bs, 1H, OH); 9.29 (bs, 1H, OH). 8.93 (CHs-Ar); 17.88 (4-CH in lactam); 30.42 (C(O)CH2); 36.53 (ArCHN); 48.50 (NCH2 in lactam); 94.58; 102.69; 102.71; 154.49; 155.60; 156.35 (6 Ar); 176.73; (C=O).

16 1622 1.66 (m, 4H, 4,5-CH2 in lactam); 1.84 (s, 3H, CHs-Ar); 2.27 (m, 2H, 3-C CH2 in lactam); 3.48 (m, 2H, 6-C CH2 in lactam); 4.26 (s, 2H, NCHAr); 5.94 (s, 1H, Ar), 9.00 (bs, 1H, OH); 9.21 (bs, 1H, OH); 10.14 (bs, 1H, OH). 8.98 (CH3-Ar); 20.77 (4-CH in lactam); 22.79; 31.66 (C(O)CHa); 41.53 (ArCH2N); 48.49 (NCH2 in lactam); 94.30; 102.37; 102.53; 154.79; 156.17; 156.48 (6 Ar); 171.73; (C=O).

17 1617 1.51-1.62 (m, 6H, 4,5,6-CH2 in lactam); 1.84 (s, 3H, CHs-Ar); 2.47 (m, 2H, 3-C CH2 in lactam); 3.59 (m, 2H, 6-C CH2 in lactam); 4.27 (s, 2H, ArCH); 5.94 (s, 1H, Ar); 8.94 (bs, 1H, OH); 9.20 (bs, 1H, OH); 9.86 (bs, 1H, OH). 8.94 (CH3-Ar); 23.24; 25.96; 27.76; 29.49 (4 carbon atoms of lactamic ring); 36.07 (NCHAr); 49.89 (NCH2 in lactam); 94.37; 102.35; 102.94; 154.52; 155.98; 156.34 (6 Ar); 177.97 (C=O).

18 1637 1.85 (s, 3H, CHs-Ar); 2.67-2.77 (m, 2H, 3-C CH2 in lactam); 3.503.59 (m, 2H, 5-C CH2 in lactam); 3.77-3.88 (m, 1H, 4-C CH in lactam); 4.24 (s, 2H, ArCH); 5.95 (s, 1H, Ar in phenol); 7.18-7.28 (m, 5H, Ar in lactam); 9.01 (bs, 1H, OH); 9.09 (bs, 1H, OH); 9.51 (bs, 1H, OH). 9.01 (CH3-Ar); 36.21; 37.39 (2 carbon atoms of lactamic ring); 39.47 (ArCHN); 55.43 (NCH2 в цикле); 102.61; 102.79; 104.86; 127.28; 127.29; 129.07; 143.04; 154.59; 155.60; 156.44 (12 Ar); 175.39 (C=O).

19 1637 1.86 (p, 2H, 4-C CH2 in lactam, J = 7.89); 2.23 (t, 2H, 3-C CH2 in lactam, J = 7.89); 3.24 (t, 2H, 5-C CH2 in lactam, J = 7.02); 4.18 (s, 2H, NCHAr); 6.29 (AB-system, 2H, Ar, J = 8.83); 8.59 (bs, 3H, -OH). 17.81 (4-CH2 in lactam); 30.84 (C(O)CHa); 41.58 (ArCHN); 47.14 (NCH2 in lactam); 107.17; 115.10; 119.59; 133.78; 144.96; 146.10 (6 Ar); 174.98 (C=O).

1 2 3 4

20 1628 1.40-1.59 (m, 6H, 4,5,6-C CH2 in lactam); 2.45 (m, 2H, 3-C CH2 in lactam); 3.37 (m, 2H, 7-C CH2 in lactam); 4.28 (s, 2H, NCH-Ph): 6.34 (AB-system, 2H, Ar, J = 7.89); 8.09 (bs, 1H, -OH); 8.67 (bs, 1H, -OH); 9.12 (bs, 1H, -OH). 23.31; 27.93; 29.49; 36.45 (4 carbon atoms of lactamic ring); 47.31 (NCHAr); 49.08 (NCH2 in lactam); 107.14; 115.75; 120.19; 133.84; 144.93; 146.28 (6 Ar); 176.81 (C=O).

21 1745, 1693 1.92 (p, 2H, 4-CH2 in lactam, J = 7.60); 2.26 (t, 2H, C'(O)C'H-, J = 7.87); 3.26 (t, 2H, NCH2, J = 6.95); 4.36 (s, 2H, ArCH); 6.867.73 (m, 3H, Ar). 17.89 (4-CH2 in lactam); 30.66 (C(O)CH?); 40.50 (ArCH?N, overlapped by solvent peak); 47.13 (NCH2 in lactam); 113.01; 119.26; 125.02; 129.67; 134.88; 159.70 (6 Ar); 172.73; 174.66 (2 C=O).

22 1660, 1610 1.85 (p, 2H, 4-C CH2 in lactam, J = 7.64); 2.23 (t, 2H, 3-C CH2 in lactam, J = 8.01); 3.22 (t, 2H, 5-C CH2 in lactam, J = 7.08); 4.34 (s, 2H, NCHAr); 6.41-7.63 (AX-system, 2H, Ar, J = 8.75); 10.65 (bs, 2H, -OH); 11.95 (bs, 1H, -COOH). 17.78 (4-CH2 in lactam); 30.69 (C(O)CH?); 34.86 (ArCH?N); 47.01 (NCH2 in lactam); 104.59; 108.35; 109.86; 131.50; 162.55; 163.04 (6 Ar); 172.85; 175.06 (2 C=O).

23 1650, 1575 1.44-1.59 (m, 6H, 4,5,6-C CH2 in lactam); 2.40 (m, 2H, 3-C CH2 in lactam); 3.49-3.68 (m, 2H, 7-C CH2 in lactam); 4.41 (s, 2H, NCHPh); 6.35-7.62 (AX-cncTeMa, 2H, Ar, J=8.77). 23.21; 27.75, 29.43; 36.18 (4 carbon atoms of lactamic ring); 40.90 (ArCHN); 49.52 (NCH2 in lactam); 104.63; 109.07; 111.24; 131.68; 162.47; 163.30 (6 Ar); 172.82; 177.83 (2 C=O).

24 1707, 1633 1.87 (p, 2H, 4-CH2 in lactam, J = 7.45); 2.27 (t, 2H, C(O)CH7, J = 7.87); 3.35 (t, 2H, NCH2, J = 6.95); 4.71 (s, 2H, ArCH); 6.97 (s, 1H, Ar); 8.90 (bs, 1H, OH); 9.21 (bs, 1H, OH); 9.75 (bs, 1H, OH); 12.46 (bs, 1H, COOH). 18.05 (4-CH2 in lactam); 30.72 (C(O)CH?); 38.42 (ArCH?N); 48.15 (NCH2 in lactam); 110.75; 116.42; 121.21; 138.36; 144.99; 145.97 (6 Ar); 168.98; 176.46 (2 C=O).

25 1668, 1588 1.37-1.58 (m, 6H, 4,5,6-CH2 in lactam); 2.48 (m, 2H, 3-C CH2 in lactam); 3.46 (m, 2H, 7-C CH2 in lactam); 4.87 (s, 2H, ArCH); 6.94 (s, 1H, Ar); 8.80 (bs, 1H, OH); 9.15 (bs, 1H, OH); 10.02 (bs, 1H, OH); 12.52 (bs, 1H, COOH). 23.17; 27.58; 29.32; 36.28 (C(O)CH?); 42.23 (ArCHN); 48.11 (NCH2 in lactam); 110.73; 116.36; 121.32; 138.02; 144.92; 146.20 (6 Ar); 169.62; 177.93 (2 C=O).

26 1640 1.90 (p, 4H, 4-C CH2 in lactam, J = 7.64); 2.27 (t, 4H, 3-C CH2 in lactam, J = 7.82); 3.40 (m, 4H, 5-C CH2 in lactam); 4.19 (s, 4H, NCHAr); 5.94 (s, 1H, Ar); 9.51 (bs, 2H, OH); 9.91 (bs, 1H, OH). 17.89; 30.57 (2 carbon atoms of lactamic ring); 36.36 (NCHAr); 48.19 (NCH2 in lactam); 95.38; 103.20; 156.76; 157.34 (6 Ar); 176.32 (C=O).

27 1613 1.66 (m, 8H, 4,5-C CH2 in lactam); 2.26 (m, 4H, 3-C CH2 in lactam); 3.42 (m, 4H, 6-C CH2 in lactam); 4.27 (s, 4H, NCHAr); 5.76 (s, 1H, Ar); 9.77 (bs, 2H, OH); 9.91 (bs, 1H, OH). 20.74; 22.80; 31.67 (carbon atoms of lactamic ring); 41.66 (NCHAr); 48.64 (NCH2 in lactam); 95.12; 103.30; 157.93; 158.26 (6 Ar); 171.84 (C=O).

1 2 3 4

28 1606 1.40-1.70 (m, 12H, 4,5,6-C CH2 in lactam); 2.48 (m, 4Н, 3-С CH2 in lactam); 3.57 (m, 4Н, 7-С CH2 in lactam); 4.29 (s, 4Н, NCHAr); 5.87 (s, 1H, Ar); 9.64 (bs, 1H, -OH); 9.76 (bs, 1H, -OH); 10.49 (bs, 1H, -OH). 23.20; 27.72; 29.43; 36.06 (4 carbon atoms of lactamic ring); 42.26 (NCHAr); 49.76 (NCH2 in lactam); 95.35; 103.57; 156.86; 157.46 (6 Ar); 177.88 (C=O).

29 1622 2.32-2.78 (m, 4H, 3-C CH2 in lactam); 3.20-3.53 (m, 4Н, 5-С CH2 in lactam); 3.66-3.78 (m, 2Н, 4-С CH in lactam); 4.27 (s, 4Н, NCHAr); 5.79 (s, 1H, Ar); 7.137.31 (m, 10H, Ar); 9.76 (bs, 2H, -OH); 10.00 (bs, 1H, -OH). 37.21; 39.16 (2 carbon atoms of lactamic ring); 40.58 (NCHAr); 54.90 (NCH2 in lactam); 102.85; 127.12; 127.20; 127.22; 129.05; 143.77; 157.34; 162.35 (18 Ar); 174.77 (C=O).

CONCLUSIONS

In this work was suggested the new method of synthesis of lactamomethyl phenolic derivatives. 18 novel compounds were obtained with high yields, their structures were confirmed by physicochemical methods. Thus, target compounds are perspective for further

ЛИТЕРАТУРА

1. Vane J.R., Botting R.M. The mechanism of action of aspirin. Thrombos. Res. 2003. V. 110. P. 255-258. DOI: 10.1016/S0049-3848(03)00379-7.

2. Amadasi A., Mozzarelli A., Meda C., Maggi A., Cozzini P. Identification of xenoestrogens in food additives by an integrated in silico and in vitro approach. Chem. Res. Toxicol. 2009. V. 22. P. 52-63. DOI: 10.1021/tx800048m.

3. Waris G., Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinogen. 2006. V. 5. N 1. P. 14-21. DOI: 10.1186/1477-3163-5-14.

4. McCarty M.F., Block K.I. Preadministration of high-dose salic-ylates, suppressors of NF-kappaB activation, may increase the chemosensitivity of many cancers: an example of proapoptotic signal modulation therapy. Integrat. Cancer Therap. 2006. V. 5. N 3. P. 252-268. DOI: 10.1177/1534735406291499.

5. Kim S.-G., Lee S.-W., Park Y.-W., Jeong J.-H, Choi J.-Y. 4-Hexylresorcinol inhibits NF-kB phosphorylation and has a synergistic effect with cisplatin in KB cells. Oncology Reports. 2011. V. 26. P. 1527-1532. DOI: 10.3892/or.2011.1436.

6. Athar M., Back J.H., Tang X., Kim K.H., Kopelovich L., Bickers D.R., Kim A.L. Resveratrol: A review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol. 2007. V. 224. P. 274-283. DOI: 10.1016/j.taap.2006.12.025.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

7. Baur J.A., Sinclair D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. DrugDiscov. 2006. V. 5. N 6. P. 493-506. DOI: 10.1038/nrd2060.

8. Yoon D.H., Kwon O.Y., Mang J.Y., Jung M.J., Kim D.Y., Park Y.K., Heo T.H., Kim S.J. Protective potential of resveratrol against oxidative stress and apoptosis in Batten disease lympho-blast cells. Biochem. Biophys. Res. Commun. 2011. V. 414. N 1. P. 49-52. DOI: 10.1016/j.bbrc.2011.09.019.

9. Li Z.G., Hong T., Shimada Y., Komoto 1, Kawabe A., Ding Y., Kaganoi J., Hashimoto Y., Imamura M. Suppression of N-nitrosomethylbenzylamine (NMBA)-induced

investigation for their biological and antioxidant activities.

Acknowledgments. This work was supported by government contract № 4.5438.2017/BP of Ministry of Education and Science of Russia.

REFERENCES

1. Vane J.R., Botting R.M. The mechanism of action of aspirin. Thrombos. Res. 2003. V. 110. P. 255-258. DOI: 10.1016/S0049-3 848(03 )00379-7.

2. Amadasi A., Mozzarelli A., Meda C., Maggi A., Cozzini P. Identification of xenoestrogens in food additives by an integrated in silico and in vitro approach. Chem. Res. Toxicol. 2009. V. 22. P. 52-63. DOI: 10.1021/tx800048m.

3. Waris G., Ahsan H Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinogen. 2006. V. 5. N 1. P. 14-21. DOI: 10.1186/1477-3163-5-14.

4. McCarty M.F., Block K.I. Preadministration of high-dose salic-ylates, suppressors of NF-kappaB activation, may increase the chemosensitivity of many cancers: an example of proapoptotic signal modulation therapy. Integrat. Cancer Therap. 2006. V. 5. N 3. P. 252-268. DOI: 10.1177/1534735406291499.

5. Kim S.-G., Lee S.-W., Park Y.-W., Jeong J.-H, Choi J.-Y. 4-Hexylresorcinol inhibits NF-kB phosphorylation and has a synergistic effect with cisplatin in KB cells. Oncology Reports. 2011. V. 26. P. 1527-1532. DOI: 10.3892/or.2011.1436.

6. Athar M., Back J.H., Tang X., Kim K.H., Kopelovich L., Bickers D.R., Kim A.L. Resveratrol: A review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol. 2007. V. 224. P. 274-283. DOI: 10.1016/j.taap..2006.12.025.

7. Baur J.A., Sinclair D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 2006. V. 5. N 6. P. 493-506. DOI: 10.1038/nrd2060.

8. Yoon D.H., Kwon O.Y., Mang J.Y., Jung M.J., Kim D.Y., Park Y.K., Heo T.H., Kim S.J. Protective potential of resveratrol against oxidative stress and apoptosis in Batten disease lympho-blast cells. Biochem. Biophys. Res. Commun. 2011. V. 414. N 1. P. 49-52. DOI: 10.1016/j.bbrc.2011.09.019.

9. Li Z.G., Hong T., Shimada Y., Komoto I., Kawabe A., Ding Y., Kaganoi J., Hashimoto Y., Imamura M. Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor-igenesis in F344 rats by resveratrol. Carcinogenesis. 2002. V. 23. N 9. P. 1531-1536. DOI: 10.1093/carcin/23.9.1531.

esophageal tumorigenesis in F344 rats by resveratrol. Carcinogenesis. 2002. V. 23. N 9. P. 1531-1536. DOI: 10.1093/carcin/23.9.1531.

10. D'Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia. 2015. V. 106. P. 256-271. DOI: 10.1016/j.fitote.2015.09.018.

11. Luo H., Jiang B.-H., King S., Chen Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by fla-vonoids. Nutrition and Cancer. 2008. V. 60. N 6. P. 800-809. DOI: 10.1080/01635580802100851.

12. Роговский В.С., Матюшин А.И., Шимановский Н.Л., Се-мейкин А.В., Кухарева Т.С., Коротеев А.М., Коротеев М.П., Нифантьев Э.Е. Антипролиферативная и антиокси-дантная активность новых производных дигидрокверцетина. Экспериментал. и клинич. фармакол. 2010. Т. 73. Вып. 9. С. 39-42. DOI: 10.30906/0869-2092-2010-73-9-39-42.

13. Келарев В.И., Путкарадзе Д.Х., Абу-Аммар В.М., Ко-шелев В.Н. Синтез производных Д2-имидазолин-5-она, содержащих фурановые фрагмента:. Изв. вузов. Химия и хим. технология. 2006. Т. 49. Вып. 5. С. 19-23.

14. Абу-Аммар В. М., Гресько С.В., Келарев В.И., Коше-лев В.Н. Производные Д2-имидазолина в молекулярном дизайне конденсированных гетероциклов с фрагментами экранированного фенола. Изв. вузов. Химия и хим. технология. 2007. Т. 50. Вып. 9. С. 105-109.

15. Кошелев В.Н., Иванова Л.В., Аласади Р.Т.Х., Приме-рова О.В. Синтез новых 4-Я-1,2,4-триазолин-5-тионов, содержащих фрагмент пространственно-затрудненного фенола. Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 3. С. 42-47. DOI: 10.6060/tcct.2017603.5473.

16. Shorvon S. Pyrrolidone derivatives. Lancet. 2001. V. 358. P. 1885-1892. DOI: 10.1016/S0140-6736(01)06890-8.

17. Ahmed A.H. Oswald R.E. Piracetam defines a new binding site for allosteric modulators of a-amino-3-hydroxy-5-me-thyl-4-isoxazole-propionic acid (AMPA) receptors. J. Med. Chem. 2010. V. 53. P. 2197-2203. DOI: 10.1021/jm901905j.

18. Mudududdla R., Bharate J., Bharate S. ortho-Amidoalkylation of Phenols via Tandem One-Pot Approach Involving Oxazine Intermediate. J. org. chem. 2012. V. 77. P. 8821-8827. DOI: 10.1021/jo3017132.

19. Воробьев С.В., Примерова О.В., Кошелев В.Н., Иванова Л.В. Получение лактамсодержащих производных алкилфе-нолов. Бутлеров. сообщ 2018. Т. 54. Вып. 6. С. 124-131.

20. Воробьев С.В., Примерова О.В., Иванова Л.В., Кошелев В.Н., Рябов В.Д. Синтез и исследование антиокислительной активности производных фенолов с гетероциклическими фрагментами. Труды Росс. гос. ун-та нефти и газа им. И.М. Губкина. 2018. Вып. 3(292). С. 221-230.

21. Ушкаров В.И., Кобраков К.И., Алафинов А.И., Шевелев С.А., Шахнес А.Х Метилфлороглюцин — доступный полупродукт для синтеза азокрасителей. Хим. технология. 2006. Т. 7. Вып. 8. С. 5-9.

22. Bistrzycki A., Kostanecki St. Ueber ein neues Isomeres des Euxanthons. Chem. Ber. 1885. V. 18. P. 1983-1988 (in German). DOI: 10.1002/cber. 18850180235.

23. Joubert F., Sharples G., Musa O., Hodgson D., Cameron N. Preparation, properties, and antibacterial behavior of a novel cellulose derivative containing lactam groups. J. polymer sci. part A: polymer chem. 2014. V. 53. P. 68-78. DOI: 10.1002/pola.27441.

10. D'Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia. 2015. V. 106. P. 256-271. DOI: 10.1016/j.fitote.2015.09.018.

11. Luo H., Jiang B.-H., King S., Chen Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by fla-vonoids. Nutrition and Cancer. 2008. V. 60. N 6. P. 800-809. DOI: 10.1080/01635580802100851.

12. Rogovskii V.S., Matiushin A.I., Shimanovskii N.L., Semeikin A.V., Kukhareva T.S., Koroteev A.M., Koroteev M.P., Nifant'ev E.E. Antiproliferative and antioxidant activity of new dihydroquercetin derivatives. Eksp. Klin. Farmakol. 2010. V. 73. N 9. P. 39-42 (in Russian). DOI: 10.30906/0869-2092-2010-73-9-39-42.

13. Kelarev V.I., Putkaradze D.H., Abu Ammar W.M., Koshelev V.N. Synthesis ^-imidazoline-5-one derivatives containing fu-ran's fragments. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2006. V. 49. N 5. P. 19-23 (in Russsian).

14. Abu Ammar W.M., Gres'ko S.V., Kelarev V.L, Koshelev V.N. Д2-Imidazoline derivatives in molecular design of condensed heterocycles with fragments of space-hindered phenol. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2007. V. 50. N 9. P. 105-109 (in Russsian).

15. Koshelev V.N., Ivanova L.V., Alasadi R.T.Kh., Primerova O.V. Synthesis of novel 4-R-1,2,4-triazolin-5-thiones containing space-hindered fragment of phenol. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 3. P. 43-47. DOI: 10.6060/tcct.2017603.5473.

16. Shorvon S. Pyrrolidone derivatives. Lancet. 2001. V. 358. P. 1885-1892. DOI: 10.1016/S0140-6736(01)06890-8.

17. Ahmed A.H. Oswald R.E. Piracetam defines a new binding site for allosteric modulators of a-amino-3-hydroxy-5-me-thyl-4-isoxazole-propionic acid (AMPA) receptors. J. Med. Chem. 2010. V. 53. P. 2197-2203. DOI: 10.1021/jm901905j.

18. Mudududdla R., Bharate J., Bharate S. ortho-Amidoalkylation of Phenols via Tandem One-Pot Approach Involving Oxazine Intermediate. J. org. chem. 2012. V. 77. P. 8821-8827. DOI: 10.1021/jo3017132.

19. Vorobyev S.V., Primerova O.V., Koshelev V.N., Ivanova L.V. Synthesis of alkylphenols lactamomethyl derivatives. Butlerov Soobshch. 2018. V. 54. N 6. P. 124-131 (in Russian).

20. Vorobyev S.V., Primerova O.V., Ivanova L.V., Koshelev V.N., Ryabov V.D. Synthesis and antioxidant activity of phenolic derivatives with heterocycles fragments. Trudy Ross. Gos. Un-ta Nefti Gaza. 2018. N 3(292). P. 221-230 (in Russian).

21. Ushkarov V.I., Kobrakov Kb, Alafinov A.I., Shevelev S.A, Shakhnes A.Kh. Methylphloroglucinol as an available semiproduct for azo dye synthesis. Theoret. Found. Chem. Eng. 2007. V. 41. N 5. P. 671-674. DOI: 10.1134/S0040579507050375.

22. Bistrzycki A., Kostanecki St. Ueber ein neues Isomeres des Euxanthons. Chem. Ber. 1885. V. 18. P. 1983-1988 (in German). DOI: 10.1002/cber. 18850180235.

23. Joubert F., Sharples G., Musa O., Hodgson D., Cameron N. Preparation, properties, and antibacterial behavior of a novel cellulose derivative containing lactam groups. J. polymer sci. part A: polymer chem. 2014. V. 53. P. 68-78. DOI: 10.1002/pola.27441.

Поступила в редакцию (Received) 15.11.2018 Принята к опубликованию (Accepted) 09.09.2019

i Надоели баннеры? Вы всегда можете отключить рекламу.