о
m
UDK 504.054 DOI: 10.24411/1816-1863-2019-11036
^ EVALUATION M. I. Kurilenko, Graduate Student
of THE SEASONAL at the Institute of Natural and Technical
u OF THE SEASONAL Sciences of Surgut state University,
o DYNAMICS environmental engineer (ecologist),
o of HYDROCHEMICAL open joint stock company "SurgutNIPIneft'
u mini-liky@mail.ru, Surgut,
CHARACTERISTICS T. I. Khomenushko, Graduate student
o OF WATER BODIES at the Institute of Natural and Technical
x oe liUAMTV MAM civcif Sciences of Surgut state University,
OF KHANTT-MANSITSK Head of Laboratory at the limited liability
¡3 DISTRICT company "Center of scientific-research
m О
and industrial works " (LLC "CNIP"), homenushko@yandex.ru, Kogalym,
<d
I-
o S. N. Rusak, Dr. of Sc. (Biol.), Associate
I-
u
Professor, Professor at the Institute of Natural and Technical Sciences of Surgut state
и University, Svetlana_01.59@mail.ru, Surgut
The main indicators of the salt composition of the water bodies of the Khanty-Mansiysk region in the О dynamics of the seasons of the year are examined. The relevance of the study is caused by the fact that Ф water objects of the region are of great importance in fishery management, which entails the need for constant monitoring. Carrying out various works on such reservoirs has a negative impact on the ecology О of aquatic organisms and leads to a decrease in the natural productivity of water bodies. An assessment и of the state of watercourses in the licensed area of the Middle Ob River oil field was carried out. It is ^ shown that the natural background of the content of individual indicators of salt composition exceeds ¡5 the normative values of MPCspp (total iron, manganese) many times over, while the presence of other О ingredients has a very low threshold for their content (chlorides, nitrates, sulfates).
S Рассматриваются основные показатели солевого состава водных объектов Ханты-Мансийского ^ района в динамике сезонов года. Актуальность исследования вызвана тем, что водные объекты района имеют большое значение в рыбохозяйственном отношении, что влечет за собой необходимость постоянного мониторинга. Проведение различных работ на таких водоемах оказывает отрицательное воздействие на экологию гидробионтов и приводит к снижению естественной продуктивности водоемов. Выполнена оценка состояния водотоков на территории лицензионного участка нефтяного месторождения Среднего Приобья. Показано, что природный фон содержания отдельных показателей солевого состава многократно превышает нормативные значения ПДКвр (общее железо, марганец), в то время как присутствие других ингредиентов отличается очень низким порогом их содержания (хлориды, нитраты, сульфаты).
Key words: salt composition, seasonal dynamics, monitoring of watercourses, oil field, pollution of water bodies.
Ключевые слова: солевой состав, сезонная динамика, мониторинг водотоков, нефтяное место -рождение, загрязнение водоемов.
Introduction. It is well known that the surface waters of the Khanty-Mansiysk district are experiencing a powerful anthropogenic load, which is associated with the active development in recent decades of the infrastructure of cities and the largest Russian oil and gas complex. As a result of anthropogenic impact on the water bodies of the region, the state of surface waters is characterized as unfavorable. Most watercourses fall into the "very polluted" and "dirty" categories. Contamination of water bodies occurs with nitrogen nitrite, ammonium nitrogen, petroleum
products, compounds of iron, copper, zinc, manganese. The inflow of saline stratal waters during drilling leads to an increase in salinity and, above all, chloride ions [1, 2].
The quality of natural waters is determined by the combination of natural and man-made factors. The waters of the surface rivers of the Khanty-Mansiysk District are characterized by increased color, a high content of dissolved organic matter, and also a very high concentration of iron [2], which generally indicates an unfavorable biogeochemical situation in the area. That is why for the water supply of
the population, not only of the district, but also of the whole district, now drinking water is used in most settlements by groundwater sources.
In the biogenic cycle, the aquatic environment is one of the most dynamic components. Depending on the composition of water, stable and radioactive isotopes of metals can form compounds of various anions, which, being present in the aqueous phase, can affect the distribution processes in the solid-water system [3]. In turn, the types of compounds that are formed in the aquatic environment, largely affect the distribution processes in the studied aquatic systems. The main ligands involved in the complexation process in the systems under consideration are not only Cl-,
HCO-, CO2-, OH-, SO2-, PO3-, NO-
anions, but also molecules of dissolved organic compounds. Depending on the number of one or another type of anion in water, processes in surface water bodies may occur, associated with a decrease or increase in the proportion of migration forms of anthropogenic pollution [4].
The studied water bodies are of great importance in fisheries and are located in flood-plain areas in the middle course of the river. Ob, therefore, an increase in the man-made load on the catchment areas can lead to the death of valuable species of fish, as well as forage reserves (zoobenthos). The studied watercourses belong to the water bodies of the highest category of fishery significance, are a place of spawning migrations and spawning of especially valuable species of fish — sturgeon and whitefish. Obi floodplain in the middle course serves for spawning and feeding of local fish species, including especially valuable ones. The ichthyofauna is represented by sturgeon, ide, roach, dace, carp (gold and silver), pike, perch, ruff. All of them belong to the group of spring-spawning species. The reproduction of fish stocks of lake-river water bodies of the middle Ob is influenced by natural factors, the main of which are spring-summer floods and winter frosts [5].
The current habitat conditions of macro-phytes allowed the formation of very rich and stable flora and fauna in the rivers of the Ob basin. Thickets of aquatic vegetation, which serve as excellent breeding grounds for phy-tophilic fish, are found mainly in the backwaters and inlets, flooded by floods, and other areas of the floodplain. The production of
various works on reservoirs of fishery importance has a negative impact on the ecology of aquatic organisms, which can lead to a decrease in natural productivity, changes in the species composition of the ichthyofauna and depletion of fisheries resources in general.
To diagnose the state of water bodies that are not used for water supply, but are components of the natural environment susceptible to pollution, as well as an agent for the transfer and spread of pollution, and in order to assess the nature and intensity of anthropogenic load, the values of the actual content of components are compared with the maximum permissible concentrations for fishery water bodies (PDKvr.), which provides for a certain compliance with the most stringent requirements for the protection of water quality resources [6].
The Priobskoye oil field is a giant field in Russia and the largest in Western Siberia; it is included in the West Siberian oil and gas province. The territory of the deposit is notable for its inaccessibility and remoteness from large cities of the Khanty-Mansiysk Autonomous Okrug. In addition, a distinctive feature of the location of this field is its location within the water protection zone of the floodplain of the Ob River, which essentially divides its territory into two parts with water, which involves flooding the field during flood periods [7]. The Priobskoye oil field is rather long and unique in reserves. At present, the Priobskoye field is divided into two license areas: the northern and the southern [7]. The area of the northern licensed territory of the field was explored, the area of work is located in the floodplain of the Ob River in its middle course.
The purpose of this study was to assess the seasonal dynamics of the main hydrochemi-cal characteristics of surface watercourses (Nornik Ave., Neulev Ave., Maliy Salym Ave., Promet Ave., Mezhevaya River, Evyakha River, Gorodishchenskaya River, Ob River) in the northern license parts of the Priobskoye field.
The object and methods of research. Investigations of the quality of water bodies included the sampling of surface water from six different sites in the area of well wells: No. 99—103 — p. Gorodische, well bushes No. 113—110 — p. Mezhevaya, well bush No. 151 — p. Ob, Well Cluster No. 170 — Pr. Norilnik, Well Cluster No. 171 — Small
o>
o
O -i X x
CD D
Q &
CD w
0 ^
Q D
1
O n
n
-I
T3
o
-I
CD
OD -I 03
Q
O T3 O m
n
o
X
o
w n
-I 03
Q
D m i-
U
IK
CO
O X
o ^
u a O CP
o
a
U
CD iX
o
CP
I-
u
u o
X
u a
c
O
CO
CD
vo
w
a ^
u CD
T X
O (D
Fig. 1. Map of the location of sampling points for surface waters in the northern part
of the Priobskoye field:
1 — p. Eviaha; 2 — Promet Ave; 3 — Norinnik Ave; 4 — Neulev Ave; 5 — Small Salym Ave; 6 — p. Ob; 7 — p. Horodyshchenskaya; 8 — p. Mezhevaya.
Salym Ave., Well Cluster No. 174 — Neuliova Ave., Well Bushes No. 280—282 Promet Ave. (Fig. 1). This area is subject to a high anthropogenic load — the construction of oil wells, the reconstruction of roads, laying of pipelines, etc. The ecological state of the river system is an important issue, since it is the rivers that largely determine the hydrological and hydrobiological regime, the composition and quality of river waters. All changes in the hy-drological regime of water bodies affect the hydrographic chain. That is why it is necessary to note the high importance of monitoring the water of natural watercourses flowing in the general agglomeration of industrial cities.
Sampling, storage and transportation of surface water samples was carried out in accordance with the requirements of GOST 17.1.5.05—85 "Nature Protection. Hydrosphere. General requirements for sampling of surface and sea waters, ice and precipitation". Laboratory analysis is carried out according to the methods included in the federal list of measurement procedures approved for use in monitoring environmental pollution in-
cluded in the accreditation area of the laboratory of LLC YuganskNIPI (Accreditation Certificate of the Federal Agency for Technical Regulation and Metrology No. POCC RU.0001.515777 dated June 24, 2014, valid until June 24, 2019).
The assessment of pollution of water bodies located within the boundaries of the Pri-obskoye field was carried out according to the results of a quantitative chemical analysis of 14 hydrochemical indicators performed in the autumn and winter period of 2015 [3], the results of the analysis are presented in Table 1.
Results and its discussion. Of particular relevance is the control of the content of chloride ions. Of all the anions, chlorides have the highest migration capacity, which is explained by their good solubility, poorly pronounced sorption capacity, and therefore chloride contamination spreads over long distances. The macrocomponents, which include chloride ions and sulfate ions, enter the surface waters during leaching of rocks, as well as as a result of human production, therefore their content is mainly determined by the
Characteristics of the seasonal dynamics of hydrochemical indicators in the waters of the Priobskoye field in 2015, mg/dm3
pH no2 n03 NH4 SO4 cr P04 HCO3 BOD full. no Fe total M11 Cu Oil products Phenols
№ Place of selection mg/dm3 mg 02/m3 mg/dm3
6,5-8,5 0,08 40 0,5 100 300 0,15 1000 3,0 5,0 0,1 0,01 0,001 0,05 0,001
Autumn — winter
1 r. Eviaha 7,16 0,055 0,24 0,61 6,04 < 10,0 < 0,01 94,0 2,54 13,1 2,09 0,07 0,006 0,046 0,003
2 duct Promet 6,70 0,036 1,56 0,25 4,79 < 10,0 0,06 23,5 3,32 6,57 0,48 0,008 0,003 0,014 0,002
3 duct Norinnik 7,06 0,045 0,97 0,45 8,24 < 10,0 0,06 82,2 1,96 12,8 0,35 0,02 0,009 0,015 0,004
4 duct Neoleva 7,04 0,049 1,28 0,28 3,06 10,6 0,09 181,2 2,16 5,82 1,40 0,33 0,006 0,131 0,005
5 duct Small Salym 6,70 0,020 0,47 1,07 < 2,0 < 10,0 0,16 195,9 3,32 7,06 4,18 0,72 0,009 0,096 0,004
6 r. Ob 7,25 0,112 0,33 0,60 7,61 < 10,0 < 0,01 96,1 2,45 14,7 0,87 0,04 0,002 0,031 0,0008
7 r. Horodyshche 7,06 0,023 0,20 3,90 < 2,0 11,4 < 0,01 306 1,96 6,13 0,05 0,73 0,073 0,062 0,003
8 r. Mezhevaya 7,16 < 0,01 1,63 1,62 < 2,0 12,8 < 0,01 < 10,0 2,54 4,45 2,23 0,21 0,006 0,022 0,001
Spring — Summer
1 r. Eviaha 5,10 0,018 0,47 2,04 < 2,0 0,018 < 0,01 < 10,0 11,3 0,46 2,86 0,0095 0,0021 0,46 0,002
2 duct Promet 5,93 0,084 3,09 0,91 5,25 < 10,0 0,017 12,2 2,14 24,1 1,30 0,404 0,0086 0,02 0,002
3 duct Norinnik 6,91 < 0,01 0,96 0,55 9,88 < 10,0 0,41 146 1,96 15,6 5,50 0,353 0,0126 0,04 0,003
4 duct Neoleva 6,80 0,013 0,28 0,59 2,67 11,7 0,07 178,8 1,84 5,39 1,18 0,248 0,0074 0,05 0,005
5 duct Small Salym 6,69 0,027 0,53 0,45 < 2,0 < 10,0 0,18 208 2,44 8,66 4,14 0,658 0,0078 0,05 0,003
6 r. Ob 7,06 < 0,01 0,48 2,98 5,44 < 10,0 < 0,01 49,4 2,18 14,0 0,52 0,008 0,0034 0,03 0,001
7 r. Horodyshche 5,41 < 0,01 0,70 1,91 7,16 16,3 < 0,01 49,4 3,02 71,8 0,78 0,027 0,0098 0,05 0,003
8 r. Mezhevaya 6,18 0,012 0,75 0,41 4,21 < 10,0 < 0,01 18,6 3,62 8,48 0,09 0,005 0,0045 < 0,05 0,002
* Note: In the table, cells with ail excess of the content of the component relative to the MPCpV standards are indicated in color.
^ DaiDMKSOX OJCODtfodoJ H DaiDll/eiHodlD <UDOHDDUOS99 KD:>ID9hHJCmo:>l£;
D m i-
U
IK
CO
O X
o ^
u a
O ^
O
D
U
CD iS
o
I-
u
u o
X
u D c
O
CO
CD VO
IK
D ^
U CD
T X
O
(D
geology of the catchment area of watercourses. The content of chlorides during the observation period can be considered stable. Further, the concentration of chloride ions directly depends on the pH of the surface water: with increasing acidity of the medium, it increases. The study of the state of surface waters in the autumn-winter period of the year showed that the reaction of the medium was generally neutral, the pH value varied in the range of values from 6.70 to 7.25 units, the content of chloride ions was low and did not exceed the values of MPCvr less than 10 mg/dm3. In the spring-summer season of the year for three water bodies (the Evyakha River, the Gorodishchenskaya River and the Promet Channel), there was a shift in the response of the medium towards acidification from 5.10 to 5.93 units. This may be due in part to the marsh type of feeding of these rivers, typical of the taiga landscapes of Western Siberia [7].
An indicator that indirectly characterizes the content of organic substances in water is the value of biological oxygen consumption (BOD), which demonstrates the rate of use of oxygen by microorganisms in the processes of nitrogen oxidation released during the destruction of organic substances and identifies the presence of rapidly oxidizing organic matter. So, the BOD value in water samples of the studied water bodies on the territory of the Priobskoye field varies within the limits of 1.96 j3.32 mgO2/dm3 in the autumn-winter period and from 1.96^3.62 mgO2/dm3 in the spring-summer season. According to the BOD value, the surface waters of these water bodies can be classified as moderately polluted and polluted.
It is well known that ammonium and iron ions are attributed to biogenic elements; as a rule, they enter surface water as a result of leaching from the soil or with industrial effluents. In our case, the content of ammonium nitrogen in the water bodies of the studied area exceeded the standard values of MPCvr in 62 % of cases during the cold period and 75 % — respectively in the warm season of the year. High concentrations of ammonium ion as a reduced form of mineral nitrogen are a characteristic feature of the Middle Ob Ob watercourses due to the periodically occurring reducing conditions of drained wetland catchments [7]. The presence of nitrate ions in water bodies in the absence
or low content of nitrites and ammonium ions indicates the completion of the mineralization process. The simultaneous presence of nitrites, ammonium ions and nitrates in water may indicate the incompleteness of the above process. As can be seen from the data of table 1, the content of nitrate nitrogen in the water samples of the investigated area was characterized by low concentrations and did not exceed the MPCvr indices.
The concept of "oil products" in hydro-chemistry is conditionally limited only to the hydrocarbon fraction (aliphatic, aromatic, al-icyclic hydrocarbons) extracted from aqueous samples with hexane. As a result of the processes of evaporation, sorption, biochemical and chemical oxidation occurring in water bodies, the concentration of oil products significantly decreases, especially in summer, and the initial chemical composition of oil products changes significantly, resulting in the accumulation of the most soluble and stable low molecular weight aromatic hydrocarbons. Considering the fact that petroleum products are typical pollutants of surface water in the Middle Ob region [8], in the surface water samples for the observation periods the content of petroleum products exceeded the standard indicators in 37 % of cases for the autumn-winter season of the year to normalized MPCvr values, with the exception of a single water body. Such a change in the situation is quite explicable by the diluting tendency of large volumes of water masses in the period of high water that feed these watercourses.
The content of phenolic compounds in the studied samples of water bodies exceeded the MPCr standards during periods of low water and high water, with the exception of single streams. It should be noted that this circumstance is caused both by a natural fact — incomplete microbiological transformation of organic substances in the period of oxygen deficiency during open water, and by techno-genic reasons — by the influx of oil-containing industrial effluents.
The content of manganese compounds for the studied water bodies showed a high excess in comparison with the permissible values of MPCvr in all seasons of the annual cycle. This fact is consistent with the natural and geo-chemical features of the taiga areas of Western Siberia — the high content of this element, nutrient activity and mobility, the conse-
quence of which the natural waters of the river the Priobskoye field is high waterlogging,
network are saturated with this element. which predetermines the acidification of cer- £
The concentration of copper compounds tain small rivers and channels during flood §
in the studied water samples of the multi-sea- periods, the deficiency of dissolved oxygen g
sonal study consistently exceeded the values and the introduction of large amounts of or- e
of the standard MPCvr mteria the elevated ganic matter with melt water. Nevertheless, £
concentrations of this metal are associated the assessment of the seasonal dynamics of g
with significant waterlogging in the region, the main hydrochemical characteristics of the e
while the technogenic influence of the oil and watercourses of the studied area showed that «
gas enterprises within the catchment areas of , . , e .. n
~ \ oil pollution in the catchment areas of the a
the fields is also possible. „ ,, ~ , „ ,, . , , c
_ , . ... _ field of exploitation of the field takes place H
Conclusion. The same conditions for the , ^ ,, , 0
_ . . . _ . and can potentially contribute to a reduction c
formation of the chemical composition of riv- . , _ 7 _ „ . T T
in the fish productivity of small rivers. In this
ers in the study area determine a narrow range ^ J n
of indicators of salt composition. For the wa- regard, it is necessary to monitor these sub- p
ter courses of the taiga zone of the Middle stances on an ongoing basis, which should be g
Prioby, the natural background of the content carried out comprehensively taking into ac- §
of individual hydrochemical parameters is count the peculiarities of the natural geo- t
many times higher than the standard MPC chemical b^kgjoun^ since the use of surface g
values (total iron, manganese), while the pres- water quality assessment relative to standard g
ence of other ingredients has a very low indicators (MPCvr) is not always acceptable o
threshold of their content (chlorides, nitrates, and does not allow correlating the measure of 0
sulfates). The specific character of the catch- man-made load, especially zones of Western CC
ment area of the left-bank Ob watercourses in Siberia. o
o
References o
w
1. Yefimova M. V., Strikh N. I., Kurbanov V. Sh. Vozdeystviye neftegazovogo kompleksa na ekosistemy C Khanty-Mansiyskogo avtonomnogo okruga. — Yugry [Impact of the oil and gas complex on the ecosys- B tems of the Khanty-Mansiysk Autonomous Okrug — Ugra] // Nauchnyi' Zhurnal [Scientific Journal]. — Q 2011. — № 3. — P. 110—114 [in Russian].
2. Soromotin A. V. Ekologicheskiye problemy neftedobychi v Khanty-Mansiyskom avtonomnom okruge [Ecological problems of oil production in the Khanty-Mansiysk Autonomous Okrug] // Problemy region-al'noy ekologii [Problems of Regional Ecology]. — 2006. — № 3. — P. 24—30 [in Russian].
3. Salbu B., Lind O. C., Skipperud L. Radionuclide speciation and its relevance in environmental impact assessments // Journal of Environmental Radioactivity. — 2002. — V. 74. — Issues 1—3. — P. 233—242.3.
4. Bondareva L. G., Kalyakina O. P., Bolsunovskiy A. YA. Izucheniye vliyaniya guminovoy kisloty na prot-sessy pogloshcheniya-vydeleniya v sisteme donnyye otlozheniya — voda r. Yenisey metodami dvukhkolo-nochnoy khromatografii i gamma-spektrofotometrii [Study of the effect of humic acid on the processes of absorption and excretion in the system of bottom sediments-water p. Yenisei methods of two-column chromatography and gamma-spectrophotometry] // Zhurnal analiticheskoy khimii. — 2006. — V. 61. — № 4. — P. 388—392 [in Russian].
5. Goncharov A. V., Zaslavskaya M. B., Isayev V. A. i dr. Tipy kislorodnogo rezhima rek basseyna Obi [Types of the Oxygen Regime of the Ob River Basin] // Geografiya i prirodnyye resursy. — 2013. — № 3. — S. 69—76 [in Russian].
6. Ob utverzhdenii normativov kachestva vody vodnykh ob'yektov rybokhozyaystvennogo znacheniya, v tom chisle normativov predel'no dopustimykh kontsentratsiy vrednykh veshchestv v vodakh vodnykh ob'yektov rybokhozyaystvennogo znacheniya [On approval of water quality standards for water bodies of fisheries value, including standards for maximum permissible concentrations of harmful substances in waters of water bodies of fisheries value] // Rezhim dostupa: http://docs.cntd.ru/document/420389120 (Data obrash-cheniya: 08.10.2017).
7. Shornikova Ye. A. Integral'naya otsenka sostoyaniya ekosistem vodotokov po gidrokhimicheskim poka-zatelyam (na primere Srednego Priob'ya) [Integral assessment of the status of watercourse ecosystems by hydrochemical indicators (using the example of the Middle Ob region)] // Geografiya i prirodnyye resursy [Geography and natural resources]. — 2009. — № 1. — P. 38—45.
8. Rusak S. N., Kurilenko M. I., Khomenushko T. I., Kuropatkina M. I. Sezonnaya dinamika nakopleniya nefteproduktov v poverkhnostnykh vodoyemakh Khanty-Mansiyskogo rayona [Seasonal dynamics of accumulation of petroleum products in surface water bodies of the Khanty-Mansiysk region] // Slozhnost'. Razum. Postneklassika [Complexity. Mind. Post-neklassika]. — 2017. — № 4. — P. 51—58.
ОЦЕНКА СЕЗОННОЙ ДИНАМИКИ ГИДРОХИМИЧЕСКИХ ПОКАЗАТЕЛЕЙ
2 ВОДОТОКОВ ХАНТЫ-МАНСИЙСКОГО РАЙОНА
и
т М. И. Куриленко, аспирант Института естественных и технических наук Сургутского
X государственного университета, инженер по охране окружающей (эколог) среды ОАО
¡э «СургутНИПИнефть», инженер по охране окружающей среды, mini-liky@mail.ru,
§ Т. И. Хоменушко, аспирант Института естественных и технических наук
¡^ Сургутского государственного университета, нач. лаборатории ООО «Центр
^ научно-исследовательских и производственных работ», homenushko@yandex.ru,
¡2 С. Н. Русак, д. б. н, профессор Института естественных и технических наук
х Сургутского государственного университета, svetlana_01.59@mail.ru о
т
I-
и
Библиографический список
1. Ефимова М. В., Стрих Н. И., Курбанов В. Ш. Воздействие нефтегазового комплекса на экосис-О темы Ханты-Мансийского автономного округа — Югры // Научные ведомости. — 2011. — № 3. — ¡^ С. 110—114.
2. Соромотин А. В. Экологические проблемы нефтедобычи в Ханты-Мансийском автономном оки руге // Проблемы региональной экологии. — 2006. — № 3. — С. 24—30.
g 3. Salbu B., Lind O. C., Skipperud L. Radionuclide speciation and its relevance in environmental impact
assessments // Journal of Environmental Radioactivity. — 2002. — V. 74. — Issues 1—3. — P. 233—242.3.
с 4. Бондарева Л. Г., Калякина О. П., Болсуновский А. Я. Изучение влияния гуминовой кислоты на
со процессы поглощения—выделения в системе донные отложения — вода р. Енисей методами
vo двухколоночной хроматографии и г амма-спектрофотометрии // Журнал аналитической химии. —
Ф
I-
* 2006. - Т. 61. - № 4. - С. 388-392.
§ 5. Гончаров А. В., Заславская М. Б., Исаев В. А. и др. Типы кислородного режима рек бассейна
и Ф т х
О
(D
Оби // География и природные ресурсы. — 2013. — № 3. — С. 69—76.
6. Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения // Режим доступа: http://docs.cntd.ru/document/420389120 (Дата обращения: 08.10.2017).
7. Шорникова Е. А. Интегральная оценка состояния экосистем водотоков по гидрохимическим показателям (на примере Среднего Приобья) // География и природные ресурсы. — 2009. — № 1. — С. 38—45.
8. Русак С. Н., Куриленко М. И., Хоменушко Т. И., Куропаткина М. И. Сезонная динамика накопления нефтепродуктов в поверхностных водоемах Ханты-Мансийского района // Сложность. Разум. Постнеклассика. — 2017. — № 4. — С. 51—58.
42
№1, 2019