УДК 577.1:616.89
ЭНДОГЕННЫЙ ЭТАНОЛ И АЦЕТАЛЬДЕГИД,
ИХ БИОМЕДИЦИНСКОЕ ЗНАЧЕНИЕ (Обзор литературы)
Ю. А. Тарасов, к. б. н., с.н .с.; В. В. Лелевич, д. м. н., профессор
УО «Гродненский государственный медицинский университет»
В обзоре представлены литературные данные о метаболизме эндогенного этанола и ацетальдегида в организме, а также их биологическом значении.
Ключевые слова: эндогенный этанол, ацетальдегид, алкогольдегидрогеназа, альдегиддегидрогеназа, пиру-ватдегидрогеназа.
The review presents the literature data on the metabolism of endogenous ethanol and acetaldehyde in the organism, as well as their biological value.
Key words: endogenous ethanol, acetaldehyde, alcohol dehydrogenase, acetaldehyde dehydrogenase, pyruvate dehydrogenase.
Характеризуя биологическую активность этанола и его метаболита - ацетальдегида, следует подчеркнуть два аспекта проблемы. Во-первых, когда речь идет об этих соединениях, как естественных метаболитах, постоянно (эндогенно) присутствующих в организме в физиологических концентрациях [11]. Во-вторых, когда возникает ситуация с экзогенным поступлением алкоголя в организм, то есть, формирование состояний острой или хронической алкогольной интоксикации [3, 7].
Этанол и его метаболиты - естественные компоненты обмена веществ, являются незаменимыми участниками гомеостатических механизмов [22]. Для оценки метаболической значимости эндогенного этанола, следует сопоставить его уровень в крови и тканях с содержанием известных субстратов - участников обмена веществ в организме человека и животных (см. таблицу). Это дает возможность убедиться, что с учетом относительно малой молекулярной массы этанола, он легко помещается в один ряд с промежуточными продуктами углеводного и белкового обмена. Из представленных в таблице данных следует, что на несколько порядков ниже, чем эндогенный этанол, в этом ряду находится концентрация нейромедиатора. Но с ней вполне сопоставимо содержание ацетальдегида, постоянно присутствующего в организме в равновесных (1:100) с этанолом соотношениях. Это позволяет полагать, что роль пары этанол/ ацетальдегид в поддержании гомеостатических функций обмена веществ подобна той, которую выполняют в орга -низме отношения глюкоза/глюкозо-6-фосфат и лактат/ пируват в контроле реакций гликолиза и стабилизации уровней интермедиатов гликолиза [8].
Количество пирувата в тканях на 2-3 порядка ниже, чем лактата, но сам пируват, как и ацетальдегид, высоко реакционноспособен. При меняющихся метаболических ситуациях уровень пирувата смещается в значительно
Таблица - Содержание некоторых соединений и эндогенного этанола в крови и печени__________________________________________
Соединение Кровь (моль/л) Печень (моль/кг)
Глюкоза 5 - 10- 3
Глюкозо-6-фосфат 2 ■ 10- 4
Фруктозо-6-фосфат 2■10-4
Фосфодиоксиацетон 10- 5 - 10- 4 10-4
Аминокислоты 10-4 - 10-3
Этанол 10- 4 10- 4
Адреналин 10- 9
меньшей степени, чем уровень лактата, что, несомненно, отражает большую значимость в обмене веществ первого, а не второго соединения. Поэтому лактат расценивается как буферный метаболический тупик, нивелирующий колебания пирувата. С таких же позиций система этанол/ацетальдегид - аналогичный контрольный пункт для двууглеродных соединений и самого ацеталь-дегида. Такая оценка взаимоотношений этанол/ацеталь-дегид вполне удовлетворительно объясняет лабильность уровня эндогенного этанола при самых различных воздействиях. Таким образом, эндогенный этанол выполняет роль буфера, находящегося в равновесных динамических отношениях со своим весьма активным предшественником - ацетальдегидом. Рассматриваемая пара -этанол/ацетальдегид (см. рисунок) выполняет сходные функции буферного пула в отношении очень активного, особенно в отношении нейрогормонов, метаболита -ацетальдегида. Этанол работает в этой системе как буферный резерв для ацетальдегида, нивелируя колебания, которые неизбежно возникают в связи с синусоидальным характером течения многозвеньевых цепных реакций в обмене веществ [22].
Углеводы, липиды, аминокислоты
X
Лактат □ пируват □ ацетил-КоА
□
Этанол □ ацетальдегид □ ацетат
Другие источники
Рисунок - Лактат и этанол как метаболические «тупики» в обмене пирувата и ацетальдегида
Неоднотипность функций эндогенного этанола, которые могут быть самыми разными - источник энергии, предшественник ацетальдегида, участвующего в синтезе эндогенных морфиноподобных соединений [17], и являющегося сильнейшим модификатором аминных и суль-фгидрильных групп в белках [4]. Ацетальдегид как мощнейший модификатор белков, изменяет не только их реактивность, но и пространственные характеристики, т. е. параметры, наиболее важные для эффективного связывания нейромедиаторов рецепторными белками. Ди-фильная природа этанола и ацетальдегида играет значимую роль в поддержании определенной гидрофобности белков [14] и нужной функциональной текучести последних [16].
Оба соединения рассматриваются как двууглеродные радикалы, способные конкурентно взаимодействовать с множеством других двууглеродных молекул на уровне активных центров ферментов, транспортных белков и специфических рецепторов [15]. Мембранотропность этанола функционально важна в патогенезе проявлений алкогольной болезни, поскольку различные диолы, причем, не образующие ацетальдегид, способны снять проявления синдрома отмены этанола [10]. Особое значение пара этанол/ацетальдегид может иметь во взаимоотношениях с содержащими гидроксильную или карбонильную группировки нейромедиаторами, гормонами, их предшественниками и метаболитами, поскольку концентрация этих биорегуляторов значительно ниже концентрации эндогенного этанола и ацетальдегида.
Количество эндогенно образующегося и метаболи-зируемого ацетальдегида и этанола, таким образом, следует рассматривать как фактор, контролирующий значительную часть гомеостатических механизмов, формирующих в конечном итоге состояние, к которому любой организм стремится всегда - к «метаболическому комфорту» [8].
Многократно повторенные в разные сезонные периоды года, отборы животных по их отношению к потреблению растворов этанола [9], всегда давали возможность выделения из общей популяции крыс, предпочитающих воду (ПВ) или этанол (ПЭ). ПЭ составляли примерно по 5-10% от всехживотных, проходивших тестирование. Отличительной особенностью ПЭ особей являлось то, что содержание эндогенного этанола в крови, а, особенно, в печени, у них всегда было в 2-3 раза ниже, чем у ПВ. В свою очередь, обнаруженные обратные корреляционные взаимоотношения между уровнем эндогенного этанола и добровольным потреблением алкоголя, по существу, повторяют патогенетическую ситуацию: значение эндогенного этанола и ацетальдегида является таковым, что при их дефиците в организме простейшим способом самокоррекции становится дополнительный прием алкоголя. В свою очередь, экстраполяция данных взаимоотношений на механизмы патогенеза алкоголизма дает возможность полагать, что длительное избыточное потребление алкоголя, принудительное в эксперименте на животных и добровольное или социально-мотивированное у людей, замещая в итоге наработку эндогенного этанола и ацетальдегида, приводит вначале к торможению, а затем и к деградации систем эндогенного синтеза этих соединений. Т. е. к ситуации, когда внешнее поступление алкоголя в организм становится уже необходимым. В значительной мере, естественно, упрощенно, без учета наркоманического фактора в патогенезе, такими взаимоотношениями могут быть объяснены феномен физической зависимости, а также понимание того, почему при делириозных состояниях самым лучшим и простым средством для их купирования является введение больному самого алкоголя [8].
Связь алкогольной мотивации с уровнем эндогенного этанола прослеживается и в других экспериментальных ситуациях. Так, различные факторы, влияющие на потребление алкоголя животными или лекарственные средства, используемые для лечения, по влиянию на уровень эндогенного этанола в крови и печени разделились на две диаметрально противоположные группы. Все воздействия, усиливающие алкогольную мотивацию, такие как: стресс, голодание, окситиамин, ипрониазид, тетра-гидроизохинолины - снижают, а ослабляющие алкогольную мотивацию (тиамин, тиаминдифосфат, рибофлавин, диэтилдитиокарбамат, глутамин, хлористый литий) - по-
вышают уровень эндогенного этанола [11]. Эти данные дополняются исследованиями других авторов в отношении транквилизаторов [3], кастрации [5, 6] и опытами, в которых крысы, разночувствительные к наркотическому действию этанола, отличались также и по уровню эндогенного этанола [2]. Определение уровня эндогенного этанола используется в наркологических клиниках Польши для динамического контроля применяемого терапевтического лечения больных алкогольной болезнью [19, 20]. В клинике терапии алкогольной зависимости Петербургского психоневрологического института им. В. М. Бехтерева успешно используется метод лечения алкоголизма, базирующийся на восстановлении гомеостаза эндогенного этанола в организме пациентов [21].
Следует отметить, что перечисленные варианты проявления активности этанола и ацетальдегида имеют значение не только при острой и хронической алкогольной интоксикации, но, что является первостепенным, в естественных условиях, при эндогеннофоновом функционировании соединений. При этом в оценке биологической активности этанола различают два варианта: метаболический и токсикологический. В первом случае во главе стоит эндогенный этанол - как естественный метаболит обмена веществ. Во втором - избыточно поступающий в организм этанол выступает уже как мощный токсикологический агент и фактор метаболической дезинтеграции обмена веществ. Как в одном, так и в другом случае работают практически одни и те же системы, метаболи-зирующие алкоголь и альдегид, а в процессы метаболизма этих соединений включены все основные системы организма [22]. Алкоголь, поступающий в организм, на 75-95% окисляется в печени. Другие органы обладают значительно меньшей способностью метаболизировать этанол. Кроме этого, небольшие его количества выделяются из организма с мочой и выдыхаемым воздухом [12].
Основные алкогольметаболизирующие системы:
Алкогольдегидрогеназа (АДГ, К.Ф.1.1.1.1) - фермент, широко распространенный в животных тканях и растениях. АДГ катализирует обратимое превращение алкоголей в соответствующие альдегиды и кетоны с НАД как кофактором:
Алкоголь + НАД □ альдегид + НАДН + Н+
(кетон)
Следует подчеркнуть, что при физиологических рН восстановление альдегидов или кетонов протекает в десятки раз быстрее, чем окисление алкоголей. Только при многократном (в 100-1000 раз) увеличении концентрации этанола, как это происходит при нагрузках организма алкоголем, фермент функционирует в обратном направлении [18]. Субстратами для АДГ служат первичные и вторичные алифатические спирты и альдегиды, ретинол, другие полиеновые алкоголи, диолы, пантоте-ниловый алкоголь, стероиды, □-оксижирные кислоты, 5-оксиэтилтиазол и другие. Причем, следует отметить, что этанол и ацетальдегид - это не лучшие субстраты для АДГ. Изучение внутриклеточного распределения АДГ в печени показало, что фермент локализован в цитозоле гепатоцитов, но не в купферовских клетках. Большое функциональное значение АДГ подтверждают изменения активности фермента в органах и тканях при различных патологических состояниях. Естественной функцией АДГ, в огромных количествах присутствующей в печени человека и животных, является то, что фермент образует, а не потребляет эндогенный этанол и, таким образом, активно регулирует его уровень и обеспечивает гомеостаз эндогенного ацетальдегида [8].
Микросомальная этанолокисляющая система (МЭОС). Окисление этанола микросомами протекает согласно следующему уравнению:
С2Н5ОН + НАФН + Н+ + О 2 □ СН 3СНО + НАДФ+ + 2Н О Оптимум рН этой реакции лежит в физиологической области, Км для этанола составляет 7-10 Мм, что намного выше, чем для АДГ. МЭОС отличается от АДГ и ката-лазы по чувствительности к ингибиторам, а также по ряду других свойств. Она нечувствительна к действию пиразола и азида натрия. Активируют МЭОС пропилтиоура-цил и тиреоидные гормоны. Считается, что МЭОС идентична с неспецифическими оксидазами, осуществляющими детоксикацию лекарств в печени, и что именно через МЭОС проходит АДГ-независимый путь окисления этанола в организме млекопитающих. МЭОС, со всей очевидностью, функционирует независимо от АДГ и ка-талазы, причем её вклад в окисление этанола в норме составляет около 10%, но значительно возрастает при алкогольной интоксикации.
Каталаза (К.Ф.1.11.1.6) в присутствии перекиси водорода способна окислять этанол в ацетальдегид согласно уравнению:
С Ц ОН + Ц О2 □ СНзСНО + 2Н2О Фермент функционирует в широком спектре животных тканей, причем имеет как видовые, так и индивидуальные колебания своей активности. Источниками перекиси водорода являются реакции, катализируемые глю-козооксидазой, ксантиноксидазой, НАДФН-оксидазой. Максимальная активность каталазы проявляется при физиологических рН. Скорость каталазной реакции зависит от концентрации этанола и скорости образования перекиси водорода. В организме имеется значительное количество систем, генерирующих перекись водорода и локализованных в пероксисомах, эндоплазматическом ретикулуме, митохондриях, цитозоле и создающих концентрацию перекиси водорода в пределах 10-8 - 10-6М. Как и МЭОС, каталазный путь окисления этанола относят к минорным, приобретающим определенное значение только при высоких концентрациях этанола в организме или в условиях ингибирования АДГ.
Показана возможность окисления этанола путем перевода его молекулы в □-гидроксиэтильный радикал, что может происходить при передаче электронов синтазой окиси азота, которая способна к образованию суперок-сидного радикала, а также перекиси водорода. Исследователи выражают мнение, что синтаза окиси азота по уровню окисления этанола является не менее существенной, чем цитохром Р-450 при условии наличия Ь-аргини-на в качестве основного субстрата [23].
Одним из источников эндогенного этанола в животном организме является микрофлора кишечника. В опытах на ангиостомированных животных, путем одновременного забора крови из воротной вены и периферического венозного русла, показано, что оттекающая от кишечника кровь содержит больше этанола, чем оттекающая от печени [15].
При оценке балансовых отношений в обмене этанола, таким образом, следует считаться с двумя его источниками и главной, решающей ролью печеночной алко-гольдегидрогеназы в регуляции уровня алкогольемии [9].
Окисление альдегидов в организме млекопитающих происходит преимущественно неспецифической альде-гиддегидрогеназой (АльДГ, К.Ф.1.2.1.3). Реакция, катализируемая ферментом, необратима:
СН3СНО + НАД+ + Н2О □ СН 3СООН + НАДН + 2Н+
Альдегиддегидрогеназы печени представлены двумя ферментами: с низким (высокой Км) и высоким (низкой Км) сродством к ацетальдегиду, предпочтительно использующих алифатические субстраты и НАД как кофермент или ароматические альдегиды и НАДФ в качестве кофер-мента. АльДГ существует во множественных молекулярных формах, различающихся по структуре, каталитическим характеристикам и субклеточной локализации. У млекопитающих изоферменты АльДГ классифицируются в пять разных классов. Каждый класс имеет специфическую клеточную локализацию, которая преобладает у различных видов, что предполагает очень раннюю дивергенцию в эволюции АльДГ. Кроме дегидрогеназной, АльДГ печени обладает эстеразной активностью. Активность АльДГ обнаружена в митохондриях, микросомах и цитозоле [10].
Известны, но менее изучены, и другие ферменты, принимающие участие в превращениях ацетальдегида, такие как: альдегидредуктаза, альдегидоксидаза и ксанти-ноксидаза. Но, как уже отмечалось выше, восстановление ацетальдегида в организме осуществляется главным образом АльДГ и до настоящего времени единственным известным предшественником эндогенного этанола считается ацетальдегид.
Для животных тканей известны следующие ферменты, принимающие участие в наработке ацетальдегида:
- Пируватдегидрогеназа (К.Ф.1.2.4.1), обычно катализирует окислительное декарбоксилирование пирува-та до ацетил-КоА. При этом декарбоксилирующий компонент этого полиферментного комплекса способен освобождать в ходе реакции и свободный ацетальдегид. Последний или окисляется АльДГ в митохондриях до ацетата, или в цитоплазме восстанавливается АДГ до этанола.
- О-фосфорилэтаноламинфосфолиаза (К.Ф.4.2.99.7)
- фермент, расщепляющий фосфоэтаноламин до аце-тальдегида, аммиака и неорганического фосфата.
- Треонинальдолаза (К.Ф.4.1.2.5) - катализирует реакцию расщепления треонина до глицина и ацетальдеги-да.
- Альдолаза (К.Ф.4.1.2.7) животных тканей обладает специфичностью только в связывании диоксиацетонфос-фата и использует в качестве второго субстрата любые альдегиды. В свою очередь, в обращенной реакции таким путем образуется ацетальдегид.
В последнее время показано, что уменьшению концентрации ацетальдегида в животных тканях, в условиях избирательного угнетения активности пируватдегидро-геназы, может противостоять инверсивный характер изменений активности фосфоэтаноламинлиазы и треони-нальдолазы [13].
Известно также, что при распаде □-аланина - продукта деградации пиримидиновых азотистых оснований, вначале образуется малоновый альдегид, а затем ацетальде-гид [10].
У микроорганизмов, населяющих кишечник млекопитающих, главным источником ацетальдегида является завершающий этап гликолиза - неокислительное декар-боксилирование пирувата. Только у бактерий и некоторых простейших, паразитирующих в кишечнике, происходит дезаминирование этаноламина с образованием ацетальдегида [11].
Заключая анализ литературных данных, следует отметить, что в организме человека и животных эндогенный этанол постоянно присутствует в концентрациях, сопоставимых с уровнями других естественных интерме-
диатов обмена веществ. Уровень эндогенного этанола в крови и тканях модулируется разнообразными соединениями (гормонами, витаминами, антиметаболитами, аминокислотами и их производными, солями лития, ди-сульфирамом, цианамидом) и изменяется при различных функциональных состояниях организма (стрессе, голодании, старении), механизм действия которых явно неоднотипен [11]. Само равновесие в системе эндогенный этанол/ацетальдегид, обеспечиваемое АДГ и другими ферментами, нарабатывающими и потребляющими аце-тальдегид, со всей очевидностью, контролирует и обмен двууглеродных и синтез морфиноподобных соединений, регулирует активность некоторых нейротрансмиттеров, пептидов и белков. В свою очередь, изменения активности алкоголь- и альдегидметаболизирующих систем как при их физиологических, так и в измененных алкогольными нагрузками условиях, по сути своей, являются адаптивными, обеспечивающими соответствующий функциональный и метаболический гомеостаз [22].
Обзор посвящен светлой памяти Учителя, академика Юрия Михайловича Островского, внесшего значительный вклад в понимание механизмов регуляции метаболизма эндогенного этанола и ацетальдегида, их биомедицинского значения и биохимии развития алкогольной болезни.
Литература
1. Андрианова, Л.Е. Обезвреживание токсических веществ в орга низме / Л.Е. Андриа нова, С.Н. Си луянов а // Би охимия - 5 изд.; под ред. Е.С. Северина - М.: ГЭОТАР-Медиа, 2009. - С. 619-623.
2. Андронова, Л.И. Особенности самостимуляции и эндогенный этанол у крыс разного пола / Л.И. Андронова, Р.В Кудрявцев, М.А. Константинопольский, А.В. Станишевская // Бюлл. экспер. биол. и мед. - 1984. - Т. 97, № 6. - С. 688-690.
3. Буров, Ю.В. Н ейрохими я и фа рма колог ия алкоголи зма / Ю.В. Буров, Н.Н. Ведерникова - М.: Медицина, 1985. - 238с.
4. Заводник, И.Б. Изучение взаимодействия ацетальдегида с белками и биологически активными соединениями / И.Б. Заводник, Н.С. Семуха, И.И. Степуро, В.Ю. Островский // Биохимия алкоголизма; под ред. Ю.М. Островского. - Минск: Наука и техника, 1980.- С. 68.
5. Лакоза, Г.Н. Уров ен ь эн дог ен ного этан ола и н арушен ия те стостерон-зави сим ых систем при экспериментальном а лкого-лизме самцов белых крыс / ГН. Лакоза, Н.В. Тюрина, Р.В. Кудрявцев, Н.К. Барков // I Моск. научно-практ. конференция психиат-ров-на ркологов / Вопросы патог енеза, клини ки и лечения алкогольных заболеваний. - М., 1984.- С. 66-68.
6. Лакоза, Г.Н. О значении центральной регуляции полового поведения при экспериментальном алкоголизме самцов белых крыс
/ ГН. Лакоза, А.В. Котов, А.Ф. Мещеряков, Н.К. Барков // Фарма-кол. и токсикол. - 1985. - Т. 4, № 3. - С. 95-98.
7. Лелевич, В.В. Состояние пула свободных аминокислот крови и печени при хронической алкогольной интоксикации / В.В. Леле-в ич, О.В.Артемов а // Журн ал Грод н ен ского го суда рств ен ного медицинского университета. - 2010. - № 2. - С. 16-19.
8. Островский, Ю.М. Метаболическая концепция генеза алкоголизма / Ю.М. Островский // Этанол и обмен веществ; под ред. Ю.М. Островского - Минск: Наука и техника, 1982. - С. 6-41.
9. Островский, Ю.М. Уровень эндогенного этанола и его связь с добровольным потреблением алкоголя крысами / Ю.М. Островский, М.Н. Садовник, А.А. Баньковский, В.П. Обидин // Доклады АН БССР. - 1983. - Т. 27, № 3. - С. 272-275.
10. Островский, Ю.М. Пути метаболизма этанола и их роль в развитии алкоголизма / Ю.М. Островский, М.Н. Садовник // Итоги науки и техники. Токсикология. - М.: ВИНИТИ, 1984. - Вып. 13. - С. 93-150.
11. Островский, Ю.М. Биологический компонент в генезисе алкоголизма / Ю.М. Островский, М.Н. Садовник, В.И. Сатановс-кая; под ред. Ю.М. Островского - Минск: Наука и техника, 1986.
- 95 с.
12 . О стровский , Ю.М. Метаболич еские предпосылки и п о-следствия потребления алкоголя / Ю.М. Островский, В.И. Сата-новская, С.Ю. Островский, М.И. Селевич, В.В. Лелевич; под ред. Ю.М. Островского - Минск: Наука и техника, 1988. - 263 с.
13. Пыжик, Т.Н. Пути синтеза ацетальдегида в условиях избирательного ингибирования пируватдегидрогеназы окитиамином
/ Т.Н. Пыжик // Журнал Гродненского государственного медицинского университета. - 2010. - № 3. - С. 87-88.
14. Солодунов, А.А. Исследование действия спиртов на связывание лигандов сывороточным альбумином / А.А. Солодунов, Т.П . Гайко, А.Н. Арцукеви ч // Биохи мия алкоголизма; под ред. Ю.М. Островского. - Минск: Наука и техника, 1980. - С. 132.
15. Blomstand, R. Observation on the formation of ethanol in the intestinal tract in man / R. Blomstand // Life Sci. - 1971. - Vol. 10. - P. 575-582.
16. Chin, J .H. Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice / J.H. Chin, L.M. Parsons, D.B. Goldstein // Biochim. Biophys. Acta. - 1978. - Vol. 513. - P 358-363.
17. Collins, M.A. Tetraisoquinolines in vivo. Rat brain formation of salsolinol, a product of dopamine and acetaldehyde under certain comditions during ethanol intoxication / M.A. Collins, M.G. Bigdell /
/ Life Sci. - 1975. - Vol. 16. - P 585-602.
18. Higgins, J.J. Biochemistry and pharmacology of ethanol / J.J. Higgins // New Jork-London, 1979. - P 531-539.
1 9 . Kopczynsk a , T. T he influence of a lcohol dependence on oxida tive stress pa ra meters / T. Kopczynsk a , L. Torlinski, M. Ziolkowski // Postepy Hig. Med. Dosw. - 2001. - Vol. 55, № 1. - P 95-111.
2 0 . Lu k a szewicz, A. T he compa rison of concentration of endogenous ethanol blood serum in alcoholics and in non-alcoholics at different stages of abstinence / A. Lukaszewicz, T. Markowski, D. Pawlak // Psychiatr. Pol. - 1997. - Vol. 31, - P 183-187.
21. Nikolaenko, V.N. Maintenance of homeostasis of endogenous ethanol as a method for the therapy of alcoholism / V.N. Nikolaenko // Bull. Exp. Biol. Med. - 2001. - Vol. 131,
№ 3. - P. 231-233.
2 2 . O strovsk y, Yu .M. Endogenous etha nol - its metha bolic, behavioral and biomedical significance / Yu.M. Ostrovsky // Alcohol.
- 1986. - Vol. 3. - P. 239-247.
23. Porasuphatana, S. Inducible nitric oxide syntetase cata lyses ethanol oxida tion to alpha-hydroxyethyl ra dica l a nd a cetaldehyde /
S. Porasuphata na, J . Wea ver, G.M. Rosen // Toxicology. - 2006 . -Vol. 323. - P. 167-174.
Поступила 18.03.2011