Статья
9. Погосян А.С. Окислительный обмен в эритроцитах при акупунктуре: Автореф. дис.. .канд. мед. наук.- Тула, 2005.- 22 с.
10. Портнов Ф.П. Электропунктурная рефлексотерапия.-Рига: Зинатне, 1982.- 311 с.
11. Самосюк И.З. и др. Нетрадиционные методы диагностики и терапии.- Киев: Здоровье, 1994.- 240 с.
12. Самсонова Г.О., Саулин А.А. // Тез. докл. II Межд. конгр. «Восстановительная медицина и реабилитация».- М., 2021.09.2005.- С. 76-77.
Й Самсонова Галина Олеговна в 1986 году окончила теоретико-композиторский факультет Российской Академии музыки им. Гнесиных. Кандидат биологических наук. Работает в Центре здоровья ТулГУ. Автор 35 опубликованных работ.
УДК 681.51:621.391.008.05
ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВОЗДЕЙСТВИЯ НА РЕПРОДУКТИВНУЮ ФУНКЦИЮ МЫШЕЙ ВЫСОКОЧАСТОТНОГО НЕТЕПЛОВОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Т. И. СУББОТИНА, О.В. ТЕРЕШКИНА, А. А. ЯШИН*
Ранее были выполнены исследования, целью которых явилось изучение биологических эффектов при воздействии на живой организм электромагнитного излучения крайневысокой частоты (ЭМИ КВЧ). В [1] систематизированы результаты, свидетельствующие о биоинформационном механизме воздействия низкоинтенсивного ЭМИ КВЧ, проявляющегося в активации адаптационных механизмов на субклеточном, клеточном и тканевом уровнях, как следствие биорезонанса на клеточном и субклеточном уровнях. Проведенные эксперименты, в частности, позволили выявить эффект стимуляции регенерации и дифференци-ровки со стороны стволовых клеток красного костного мозга, а также активации процессов внутриклеточной регенерации в гепатоцитах [2, 3]. Выполненные в этом направлении исследования касались изменений, происходящих в отдельных органах и системах, непосредственно не связанных с процессом передачи генетической информации размножением организмов. Ограниченная по времени серия экспериментов не позволяет говорить о возможности формирования соматических мутаций в геноме клеток изученных органов и тканей. Теоретически следует предположить возможность появления отдаленных мутагенных эффектов, как со стороны соматических, так и половых хромосом. Подтверждением роли информационных полей, как фактора мутагенеза, являются результаты, полученные в ранее проведенных исследованиях [4, 5]. Указанные работы выполнены на дрозофилах и растениях, в связи с чем требуют определенной осторожности в экстраполяции полученных результатов на высокоорганизованные организмы теплокровных животных. Одновременно встает вопрос о возможности передачи посредством переноса ЭМИ КВЧ наследственной информации от одного организма к другому «бесконтактным» способом [6].
Цель работы - установление значимости биоинформаци-онного воздействия ЭМИ КВЧ для репродуктивной функции мышей линии С57/В16. В процессе исследования на протяжении 4 месяцев проводилось параллельное облучение мышей линии С57/В16 и рандомбредных мышей. Все экспериментальные семьи были сформированы из 1 самца и 2 самок. Время однократной экспозиции ЭМИ КВЧ (/раб.=37 ГГц) составляло 6 часов. В ходе эксперимента были проведены следующие серии опытов: первая серия — облучению подвергались семьи, скомплектованные из самцов и небеременных самок; спаривание происходило в процессе эксперимента; вторая серия — облучению подвергались беременные самки, спаривание которых произошло до начала эксперимента; третья серия — проводилось облучение мышат из первых двух экспериментальных групп от момента рождения до репродуктивного возраста; четвертая серия — проводилось облучение мышат, родившихся от интактных (необлученных родителей) от момента рождения до репродуктивного возраста;
пятая серия — велось облучение семей, сформированных из мышей, родившихся от опытных животных в 1, 3 и 4 сериях от момента рождения до репродуктивного возраста и появления первого потомства. Вторая серия исключена, так как результаты не отличались от контроля. В каждой серии учитывали количество и соотношение полов новорожденных животных, сроки рождения, появление видимых соматических отклонений. Комплект аппаратуры для экспериментов по облучению подопытных животных соответствует использовавшемуся в [1—3].
Результаты экспериментов. В первой серии экспериментов параллельному облучению подвергнуты три репродуктивных мышиных семьи С57/В16 и рандомбредных мышей. Суммарное время облучения составило 60 часов (в течение 10 дней по 6 часов ежедневно). Рождение первого потомства у линии С57/В16 зарегистрировано спустя 13 дней, а рандомбредных спустя 17 дней после начала эксперимента. В семье мышеи С57/В16 родилось 4 живых мышонка: 1 самка и 3 самца без видимых соматических отклонений. Видимых соматических отклонений также не зарегистрировано. Во второй серии опытов у линии С57/В16 на 6 сутки от начала эксперимента зарегистрировано рождение 5 мышат: 2 самки и 3 самца; у параллельно облученной семьи рандомбредных мышей на 7 сутки родилось 10 мышат: 6 самок и 4 самца. Все новорожденные мышата не имели видимых аномалий. В 3-й серии в процессе облучения первого поколения мышат из первых двух опытов было получено второе поколение, состоящее из С57/В16 из 1 живого мышонка-самца, а у рандомбредных 4 самки и 3 самца, без видимых аномалий.
В связи с тем, что в третьей серии экспериментов у линии С57/В16 родился только 1 мышонок, было решено повторить первую серию экспериментов, обозначив ее как серию 1а, В результате проведения серии 1а у С57/В16 было зарегистрировано рождение 5 мышат, из них 1 самка и 4 самца. У рандомбред-ных мышей — 10 мышат: 6 самок и 4 самца. В дальнейшем была сформирована новая семья, состоящая из 1 самца, родившегося в третьей серии экспериментов, 1 самки из серии 1 а и 1 самки, родившейся от родителей, задействованных в 1 серии. Параллельно облучаемая семья рандомбредных мышей была сформирована из 1 самки и 2 самцов, родившихся в третьей серии. В процессе последующего параллельного облучения вновь сформированных семей у самки, взятой из серии 1 а родился 1 мертвый мышонок — самец. От самки, взятой из 1 серии родилось 3 живых самца. У рандомбредных мышей родилось 5 мышат: 2 самки и 3 самца. У второй самки из этой семьи потомство не получено. Животное вело себя агрессивно, набрасывалось на самца, в связи с чем было изъято из эксперимента. В контрольных группах мышей у линии С57/В16 для сравнения было взято 3 поколения. В первом поколении родилось 3 самки и 3 самца, во втором поколении 4 самки и 5 самцов и в третьем поколении 7 мышат: 3 самки и 4 самцов. У рандомбредных мышей в первом поколении родилось 10 мышат: 6 самок и 4 самца, во втором поколении также родилось 10 мышат: 5 самок и 5 самцов и в третьем поколении 8 мышат: 3 самки и 5 самцов. Все новорожденные мышата выжили, аномалий в их развитии не наблюдалось.
Обсуждение полученных результатов. Сопоставляя результаты, полученные в экспериментальных и контрольных группах животных линии С57/В16, следует отметить для экспериментальных групп прогрессирующее уменьшение потомства, преобладание во всех поколениях самцов над самками, а также рождение в третьей серии одного мертвого мышонка. В контрольной группе С57/В16 количество мышат в помете во всех зарегистрированных случаях не превышало 5 особей, в то время как в контрольной группе количество мышат в 3-х поколениях составило от 6 до 9 особей. Следует отметить, что в контрольной группе С57/В16 в потомстве также наблюдалось преобладание самцов над самками, но оно было не столь значительным, как у экспериментальных животных. Сравнение результатов, полученных у рандомбредных мышей, выявило значительные расхождения между экспериментальной и контрольной группами. Полученные результаты можно объяснить особенностями генотипа С57/В16. В потомстве линии С57/В16 рождаются только гетерозиготные особи Т/1, в то время как гомозиготные особи Т/Т и ХІ1 погибают в эмбриональном периоде. Уменьшение количества рождающихся особей можно объяснить увеличением числа гомозиготных и уменьшением числа гетерозиготных особей под воздействием ЭМИ КВЧ. Авторы отмечают, что с целью сохранения потомства редкой линии ими не проводился подсчет по
Статья
гибших эмбрионов у самок С57/В16, поэтому мы можем только предположить, что уменьшение особей в помете связано с увеличением гомозиготных эмбрионов. В нашем распоряжении имеется недостаточно данных о механизме изменения репродуктивной функции линии С57/В16 под воздействием ЭМИ КВЧ. Полученные эффекты могут быть обусловлены непосредственной перестройкой в геноме половых клеток, либо являются следствием дистантной межклеточной передачи морфогенетической информации с участием эндогенных физических полей. Этим также можно объяснить прогрессирующее уменьшение количества особей в помете С57/В16, с преобладанием самцов.
Авторы считают, что результаты, полученные в гибридной группе экспериментальных животных, не следует однозначно рассматривать как отрицательные. В отличие от линии С57/В16, в гибридной группе как доминантные, так и рецессивные гомозиготные особи являются жизнеспособными и по внешним признакам практически не отличаются от гетерозиготных особей.
Мы не исключаем возможности появления у экспериментальных мышей мутаций, для формирования которых требуется определенное время, охватывающее жизнь нескольких десятков, а возможно сотен поколений. Этим можно объяснить отсутствие видимых аномалий у подопытных животных за сравнительно короткий период наблюдения.
Результаты подтверждают возможность подмены изначально заданного фактора целенаправленным действием ЭМИ КВЧ на биологические матрицы с последующей передачей информации на организм, в основе чего лежит биорезонансный характер взаимодействия ЭМИ с живым организмом. Отметим приоритетный характер полученных результатов: по сообщению в Internet, в США аналогичный эффект обнаружен при воздействии ЭМИ КВЧ в эксперименте in vitro. В нашем же случае, эксперимент in vivo, то есть со включением всей биосистемы организма, дает более информативные и объективные результаты.
Литература
1. Афрмеев В. И. и др. // ВНМТ.— 1997.— Т. IV, № 4.— С. 18—23.
2. Богданов В. П., Крюков В. И. // ВНМТ.— 1999.— Т. VI, № 1: Приложение.— С. 19.
6. Гад С. Я.. и др. // ВНМТ.— 2000.— Т. VII, № 1.— С.39—
44.
3. Казакова Л. Г. и др. // ВНМТ.— 1999.—Т. У1, №3—4.— С. 38—41.
4. Казакова Л. Г. и др.// Physics of the Alive.— 1999.— Vol. 7, № 1.— Р. 114—117.
5. Субботина Т. И., Яшин А. А. Основы теоретической и экспериментальной биофизики для реализации высокочастотной электромагнитной терапии.— Тула: ТулГУ, 1999.— 103 с.
УДК 681.51:621.391.008.05
МЕЖОРГАНИЗМЕННЫЙ ПЕРЕНОС ФИЗИОЛОГИЧЕСКОЙ ИНФОРМАЦИИ В ПРОХОДЯЩЕМ ЭЛЕКТРОМАГНИТНОМ ИЗЛУЧЕНИИ
А.С. НОВИКОВ, Т.И.СУББОТИНА, А.А. ХАДАРЦЕВ, А.А. ЯШИН*
Как показали результаты многочисленных теоретико-экспериментальных исследований последних 10—15 лет, например, школы акад. Н. Д. Девяткова [1], взаимодействие низкоинтенсивных (нетепловых — с поверхностной плотностью потока энергии Рп < 10 мВт / см2) электромагнитных полей (ЭМП) с живым веществом имеет информационный характер [2], а физически — это есть процессы биорезонансного характера. Фундаментальное доказательство этого факта [1—4] базируется на современных достижениях информатики, молекулярной биологии клетки, теории функциональных систем, генетики, а главное - на естественнонаучных обобщениях В. И. Вернадского, И. Пригожина, Г. Хакена, Г. Селье, Л. фон Берталанфи. Самое существенное для современного направленного научного поиска в рассматриваемой
тематике — наличие большого числа невыявленных эффектов взаимодействия ЭМП с живым веществом, открытие и экспериментально-теоретическое обоснование которых приносит двоякую пользу: расширение научного знания о биофизике сложных систем в информационном аспекте и придание высокочастотной клинической терапии научного фундамента, без которого невозможно ее дальнейшее качественное развитие.
Настоящее сообщение посвящено одному из наиболее существенных, экспериментально установленных явлений в исследовании процессов взаимодействия ЭМП с живым веществом в информационном аспекте, а именно: Установлено неизвестное ранее явление переноса электромагнитным высокочастотным излучением нетепловой интенсивности характеристик собственного ЭМП организма на другой организм, не контактирующий с первым иным другим способом, кроме как одновременным расположением в зоне воздействия электромагнитного излучения (ЭМИ), причем привнесенные характеристики, накладывающиеся на высокочастотные ЭМИ, как следствие пространственной интермодуляции, воздействуют на собственное ЭМП второго организма с выраженным сано- или патогенным эффектами. Доказательство данного явления было выполнено в двух сериях экспериментов: инструментальном и биофизическом. Инструментальный, то есть выполненный в приближении технических средств, эксперимент является «нулевым» приближением к реалии биофизического процесса переноса собственного интегративного (СИ) ЭМП организма, однако, учитывая единство фундаментальных законов информатики для живого и неживого, он дает понятийную основу для осознания сущности явления. В основу инструментального эксперимента (выполнен
С. И. Титковым) положено исследование и установление факта пространственной интермодуляции — переноса ЭМП некоторого источника, наложением его на высокочастотное ЭМИ.
Эта же схема применена в серии биофизических экспериментов (рис. 1), целью которых являлось доказательство пространственной интермодуляции СИ ЭМП организма (на примере крыс) монохроматического ЭМИ крайневысокочастотной частоты (КВЧ) нетепловой (биоинформационной) интенсивности. В основе метода, применительно к задаче настоящего исследования, лежит гипотетическое предположение о переносе излучением КВЧ-диапазона «информационного слепка» [1—3] СИ ЭМП одного организма на другой организм.
Рис. 1. Схема биофизического эксперимента: 1 — генератор ЭМИ КВЧ; 2 — отражатель; 3, 6, 8 — радиопрозрачные стенки и перегородка рабочей камеры; 4 — излучатель; 5 — зона размещения больной крысы; 7 — зона размещения интактной крысы; 9 — основание; 10 — подставка
При этом переносимое СИ ЭМП, взаимодействуя с СИ ЭМП другого организма, создает систему локальных и нелокальных резонансов. Наличие последних подтверждает (по принципу и аналогии с корреляционным радиометром в радиофизике) сам факт переноса ЭМП. Наличие же резонансов (СИ ЭМП порождается организмом и накладывается на другой организм в окрестностях биологически активных точек (БАТ)) наиболее наглядно и доступно для регистрации устанавливается, если одно из экспериментальных животных имеет выраженную патологию — для чистоты эксперимента неинфекционного характера,— другое же является здоровым. Поскольку для КВЧ-терапии интересен как раз обрат-