ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ
Неорганическая и физическая химия
УДК 544.35.03
Yuriy A. Anufrikov1, Konstantin N. Semenov2, Nikolay A. Charykov3, Victor A. Keskinov4, Natalie A.Kulenova5 Pauline V. Garamova6, Alexey V.Kurilenko7, Nikolay M. Safiannikov8, Vera A. Andreeva9
DYNAMIC AND KINEMATIC VISCOSITY OF WATER SOLUTIONS OF BIS-ADDUCT LIGHT FULLERENE Cao WITH OXY-PROLINE C6o(C5HgNO2)2 - H2O at 20-60oC
1 Institute of Chemistry, St. Petersburg State University, 26, Universitetskii Pr., St. Petersburg, Petergof 198504, Russia. St Petersburg State Institute of Technology (Technical University), Moskovsky Pr., 26, St Petersburg, 190013, Russia St. Petersburg State Electrotechnical University (LETI), 5, Ul. Professor Popov, St. Petersburg, 197376, Russia 4D.Serikbaev East Kazakhstan State Technical University, 69, Protozanova St., Ust'- Kamennogorsk, Kazakhstan e-mail: [email protected]
Dynamic and kinematic viscosity and density of water solutions C6o(C5HgNO3)2 - H2O at 20, 40 and 60°C was measured with the help of the falling-ball method in the concentration range 1 -10 g/ dm3. Solution densities were measured with the help of quartz density meters. Activation energy of the viscosity flow and Vant-Hoff multi-plicate index in the system were calculated.
Keywords: Dynamic, kinematic viscosity, density, bis-adduct, light fullerene C60, oxy-proline, water solution.
Ю.А. Ануфриков1, К.Н. Семенов2, Н.А. Чарыков3, В.А. Кескинов4, Н.А. Куленова5, П.В. Гарамова6, А.В. Куриленко7, Н.М. Сафьянников8, В.А. Андреева9
ДИНАМИЧЕСКАЯ И КИНЕМАТИЧЕСКАЯ ВЯЗКОСТЬ ВОДНЫХ РАСТВОРОВ БИС-АДДУКТА ЛЕГКОГО ФУЛЛЕРЕНА Сбо С ОКСИ-ПРОЛИНОМ Сбо (СзНд^Ъ ПРИ 20-60 0С
Институт химии Санкт-Петербургский Государственный Университет, Университетский пр., 26. Петергоф, Санкт-Петербург, 198504, Россия
Санкт-Петербургский Государственный Технологический Институт (Технический Университет), Московский пр., 26, Санкт-Петербург,190013, Россия
Санкт-Петербургский Государственный Электротехнический Университет, Санкт-Петербург, Россия Восточноказахстанский Государственный Технический Университет им. Д.Серикбаева, ул. Протозанова 69, Усть-Каменогорск 070000, Казахстан е-таИ: [email protected]
Динамическая и кинематическая вязкость и плотность водных растворов Сбо(С5Н9ЫОз)2 - Н2О при 20, 40 и 60 0С измерялась с помощью метода падающего шара в диапазоне концентраций 1-10 г/дм3. Плотность растворов измеряли с помощью кварцевых денсиметров. Рассчитаны энергия активации вязкого течения и мультиплицитный индекс Вант-Гоффа в системе.
Ключевые слова: динамическая, кинематическая вязкость, плотность, бис-аддукт, легкий фуллерен Сю, окси-пролин, водный раствор.
1 Yuriy А. Anufrikov, Researcher, Institute of Chemistry, SPbSU, e-mail: [email protected] Ануфриков Юрий Алексеевич, науч. сотр. Институт Химии, СПбГУ
2 Konstantin N. Semenov, Ph.D (Chem.), Associate Professor, Institute of Chemistry, SPbSU, e-mail: [email protected] Семенов Константин Николаевич канд. хим. наук, доцент, Институт Химии, СПбГУ
3 Nikolay A. Charykov, Dr Sci. (Chem.), Professor, SPbSIT(TU), е-mail: [email protected] Чарыков Николай АлексанДрович, д-р хим. наук, профессор, СПбГТИ(ТУ)
4 Keskinov Victor A. Ph.D (Chem.), Associate Professor , SPbSIT(TU), е-mail: [email protected] Кескинов Виктор Анатольевич, канд. хим. наук, доцент, СП6ГТИ(ТУ)
5 Natalie A. Kulenova Ph.D (Chem.), Associate Professor, Department chemistry, metallurgy and enrichment, D. Serikbayev East Kazakhstan State Technical University, е-mail: [email protected]
Куленова Наталья Анатольевна канд. хим. наук, доцент, каф. химия, металлургия и обогащение, Восточно-казахстанский государственный технический университет им.Д.Серикбаева
6 Pauline V. Garamova, bachelor, SPbSIT(TU), е-mail: [email protected] Гарамова Полина Валерьевна, бакалавр, СПбГТИ(ТУ)
7 Alexey V. Kurilenko, Ph.D (Chem.), Assistant, SPbSIT(TU), е-mail [email protected] Куриленко Алексей Витальевич, канд. хим. наук, ассистент, СПбГТИ(ТУ)
8 Nikolay M. Safiannikov, Ph.D. (Eng.), Associate Professor, St. Petersburg Electrotechnical University (LETI)
Сафьянников Николай Михайлович, канд. техн. наук, доцент, Санкт-Петербургский государственный электротехнический университет (ЛЭТИ)
9 Vera A. Andreeva, Director General of "TONSPRING" Ltd, Iskrovskiy pr., 9, St. Petersburg, Russia, е-mail [email protected] Андреева Вера Александровна Генеральный директор ООО «ТОНСПРИНГ», Искровский пр., 9, Санкт-Петербург, Россия
Дата поступления - 20 февраля 2017 года
DOI 10. 15217/issn1998984-9.2017.39.3
Introduction
This article is the continuation and development of the cycle of the articles of the authors [1-26] which were devoted to the synthesis, identification and physical-chemical properties investigation of water soluble derivatives of light fullerenes (Ceo and C70): complex ethers of the carbon acids (malonates, oxalates), poly-hydroxylated forms (different fullerenols), amino-acids (argenin, alanine) etc, and water solutions of the last ones. The investigations included also some transport properties of water solutions, such as: electric conductivity and diffusion (see, for example [1-3]). Scientific and practical interest to such derivatives in the last years increases considerably, because they, possessing unique physical-chemical and bio-chemical characteristics, often are good soluble in physiological liquids such as: physiological solutions, blood, lymph, liquor, gastric juiceetc. Such water soluble derivatives even now are used in biology, medicine, pharmacology, cosmetology, food industry. Presented article is devoted to the investigation of the concentration dependence of mass-transport properties - dynamic and kinematic viscosity and density of water solutions Ceo^HgNOa^ - H2O at 20, 40 and 60oC in the concentration range 1.0-10.0 g/dm3. This direction of investigations is important for the aspects of possible use of such water solutions. As authors know, no such investigations with water soluble fullerene derivatives were described in literature later.
Experimental data
The viscosities of the samples were measured by the falling-ball method using the automated micro-viscometer Lovis 2000 M Anton Paar, Austria. The diameter of the glass capillary was =1.59 mm. The dynamic viscosity of the solution was determined by measuring the rolling time of the gold ball and using the density data. The capillary was calibrated using distilled water. Before the measurement, the capillary was filled with the sample and was thermostated at least 15 min inside the viscometer. The measurements for each sample were repeated six times, and the average value of the viscosity was estimated with the relative error less than 0.1%. The accuracy of the temperature value was AT =± 0.02 K. Accuracy of dynamic viscosity determination was from Aq=0.5 (for 20oC) to Aq=1.0 (for 60oC) rel.%. Nearly the same accuracy characterizes kinematic viscosity determination.
Temperature-concentration dependence of dynamic and kinematic viscosity of bis-adduct light fullerene water solution Ce0(C5HgNOa)2 - H2O - q(C) and Hk(C) are represented in Table 1 and Fig.1.
Table 1. Temperature-concentration dependence of dynamic and kinematic viscosity of bis-adduct light fullerene water solution C6o(C5H9NO2)2 - H2O
Concentration C (g/dm3) Density (g/cm3) Dynamic viscosity q (mPa^s) Kinematic viscosity Hk (mm2/s)
20 °C 40 °C 60 °C 20 °C 40 °C 60 °C 20 °C 40 °C 60 °C
0.0 0.9982 0.9922 0.9832 1,002 0,653 0,467 1,004 0,658 0,475
1.0 0.9987 0.9920 0.9718 1,027 0,675 0,480 1,028 0,680 0,494
3.0 0.9996 0.9929 0.9737 1,027 0,680 0,491 1,028 0,684 0,505
5.0 1.0006 0.9941 0.9784 1,065 0,680 0,504 1,064 0,684 0,515
7.0 1.0016 0.9952 0.9791 1,097 0,701 0,509 1,095 0,704 0,5201
10.0 1.0029 0.9964 0.9816 1,158 0,752 0,598 1,154 0,755 0,610
One can see that concentration dependencies q(C) and Hk(C) are arising in the whole investigated temperature and concentration ranges: dq/dC> 0,dqk/dC> 0, both curves numbers have slightly a (sigmoidal) form.
Calculation and discussion Frenckel-Andrade viscosity temperature dependence equation
Approximation form (Frenckel-Andrade formula [27]) was used for the determination of the temperature dependence of the dynamic viscosity q(T) independently of the concentration of Ce0(C5HgNOa)2 - H2O solution:
П = Hoexp[E^/RT]
(1),
where: En - activation energy of viscous flow, q - viscosity
pre-exponent.
activation energy determination was fulfilled in
the trivial form (see Fig.2): Inn = Inno +[En/R] 1/T
(2).
From the dependence lnq(1/T) one can easily determine the derivative:
dInn/d[1/T] = [En/R] = 1800±100 In[mPa*s]*K
or:
En = 14960±830 J/mole = 15.0±0.8 kJ/mole
(3),
(4).
One can see relatively high stability of En value independently of the solution concentration. Let us determine q -viscosity pre-exponent in the form:
Ho = exp[Er/RT - lnr] (see Fig.3)
or numerically:
Ho = 0.0023±0.0002 mPa*s
(5),
(6)
and full Frenckel-Andrade formula for C60(C5H9NO3)2 - H2O solution will be the following:
Г = (0.0023±0.0002) exp[(1800±100)/T]
(7).
уплт/1° = пт-дт/пт, or: Yr = Пт-1о/Пт
(8),
where yn - Vant-Hoff viscosity multi-plicate index (see Fig.4).
or numerically:
Yn = Пт-1°/Пт = 1.2°±°.°5 rel.un.
(9).
One can also observe comparatively high stability of Vant-Hoff viscosity multi-plicate index independently of Ceo(C5H9NO2)2 - H2O solution concentration.
Isothermal concentration dependence of the viscosity
In order to describe isothermal concentration dependence of the viscosity we try to use well-known and simple Bachinskiy equation [28]:
r| = Cb/(Vm - Bb)
(1°),
where: CB and BB - constants of Bachinskiy equation, VM - average molar volume of the solution:
Vm = V/(nc6°(c5h 9no3)2 + П h20)
(11),
where: V - current solution volume, ni - number of moles of i-th solution component. The data Vm (C) (as an example) for 20 °C are represented in Table 2 and h(Vm) in Fig.5. Data were calculated from the concentration dependence of the density of the solutions: p(C), determined with the help of quartz density-meters (Ap = ± 0.0002 g/sm3).
Table.2. Concentration dependence of average molar volume against concentration of C$o(C5
Unfortunately Frenckel-Andrade formula for C60(C5H9NO2)2 - H2O viscosity temperature dependence is not accurate enough, because probably pre-exponent and viscosity activation energy are not independent really in investigated temperature-concentration range.
Vant-Hoff viscosity temperature dependence equation.
Alternative Vant-Hoff analogue equation for the viscosity temperature dependence in our binary solutions can be used also:
N Concentration С (g/dm3) average molar volume VM(sm3/mole) Dynamic Viscosity Г (mPa*s)
1. 0.0 18,03 1,0020
2. 1.0 18,04 1,0268
3. 3.0 18,06 1,0279
4. 5.0 18,08 1,0646
5. 7.0 18,09 1,0971
6. 10.0 18,12 1,1578
One can see (Table 2) that: dVM/dC> 0
and also (Table 2 and Fig.5) that: dr/dVM> 0
(12),
(13).
But, if one takeBachinskiy equation (10), he will get the derivative, and it is negative:
dr/dVM = - Cb/(Vm- Bb)2< 0
(14).
So, Bachinskiy equation can not adequately (even qualitatively) describe the concentration behavior of the viscosity in the system C60(C5H9NO2)2 - H2O at constant temperature. Absolutely analogous variants are realized at the temperatures 40 and 60oC.
Investigations were fulfilled with the support of Russian Found of Fundamental Investigations (Projects NN: 15-08-08438, 16-08-01206, 15-29-05837 )and Russian Found of the Support of Small Business (Projects N 24357).
Literature
1 Semenov K.N., CharykovN.A., Murinl.V., Pukha-renkoYu.V. Physico-chemical properties of the fullere-nol-70 water solutions // J. of Molecular Liquids. 2015. V.202. Р. 1-8.
2. Тюрин Д.П., Семенов К.Н., Чарыков Н.А., Черепкова И.А., Кескинов В.А. Диссоциация фуллеренола-70-d в водных растворах и их электропроводность // Журн. физ.химии. 2015. Т.89. N5. С.764-768.
3. СеменовК.Н., ЧарыковН.А., ПостновВ.Н., Му-рин И.В. Фазовые равновесия в системах, содержащих фуллерены, как основа технологии получения и применения наноуглеродных материалов //Успехи химии. 2016. Т. 85. N 1.С. 38-59
4. Panova G.G., Ktitorova I.N., Skobeleva O.V., Sinjavina N.G., Charykov N.A. & Semenov K.N. Impact of Polyhydroxy Fullerene (Fullerol or Fullerenol) on Growth and biophysical Characteristics of Barley Seedlings in favourable and stressful Conditions // International Journalon Plant Growth and Development. 2015. V.79. N3. P. 309-318.
5. SemenovK.N., CharykovN.A., Murin I.V., Pukhar-enko Yu.V. Physico-chemical Properties of the C60-tris-malo-nic Derivative Water Solutions // J. of Molecular Liquids. 2015. V. 201. Р. 50-58.
6. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей. Л.:Химия, 1982. 592 с.
7. Храмов Ю.А. Бачинский Алексей Иосифович.
Физики: Биографический справочник / Под ред. А.И. Ахиезера. Изд. 2-е, испр. и дополн. М.: Наука, 1983. 400 с.
Literature
1 Semenov K.N., CharykovN.A., Murinl.V., Pukha-renkoYu.V. Physico-chemical properties of the fullerenol-70 water solutions // J. of Molecular Liquids. 2015. V. 202. Р. 1-8.
2. Semenov K.N., Charykov N.A., Tyurin D.P., Cherepkova I.A., Keskinov V.A Dissociation of fullerenol-70-d in aqueous solutions and their electric conductivity // Russian Journal of Physical Chemistry A. 2015. Т. 89. № 5. С. 771775.
3. Semenov K.N., Charykov N.A., Postnov V.N., Murin I.V. Phase Equlibria in Fullerene-containing Systems a Basis for Development of Manufacture and Application Processes for Nanocarbon Materials // Russian Chemical Reviews. 2016. V. 85. N 1. P. 38-59.
4. Panova G.G., Ktitorova I.N., Skobeleva O.V., Sinjavina N.G., Charykov N.A. & Semenov K.N. Impact of Polyhydroxy Fullerene (Fullerol or Fullerenol) on Growth and biophysical Characteristics of Barley Seedlings in favourable and stressful Conditions // International Journalon Plant Growth and Development. 2015. V. 79. N 3. P. 309-318.
5. Semenov K.N., Charykov N.A., Murin I.V., Pukhar-enko Yu.V. Physico-chemical Properties of the C60-tris-malo-nic Derivative Water Solutions // J. of Molecular Liquids. 2015. V. 201. Р. 50-58.
6. Reed R., Prausnitz J., Sherwood T. Properties of gases and liquids. L.: Chemistry, 1982. 592 p.
7. Khramov Yu.A. Bachinsky Alexey Iosifovich. Physicists: Biographical reference / Ed. A.I. Akhiezer. Ed. 2 nd, corrected. and add. M.: Nauka, 1983. 400 s.