Review article
https://doi.org/10.18019/1028-4427-2025-31-1-110-118
Current concepts in the management of infected non-union of the femur: internal versus external fixation
R. Kaul1H, R.R. Dubey2, R. Agrawal3, A. Pande4
1 Military Hospital Dehradun, Dehradun, India
2 Armed Forces Medical College, Pune, India
3 Agrawal Orthopaedic Hospital and Research Institute, Gorakhpur, Uttar Pradesh, India
4 Base Hospital Lucknow, Uttar Pradesh, India
Corresponding author: Rajiv Kaul, [email protected] Abstract
Introduction The management of infected non-unions continues to be a herculean task for the orthopaedic surgeon due to the emergence of microbial resistance, failure of fixation, frequent re-fractures and resurgence of previously treated infection.
The aim of the paper was to structure the approach to the management of patients with infected femoral non-union based on the literature review and surgeons' experience.
Material and methods A detailed literature review, including current updates on the management of fracture-resistant infections (FRI) and non-union of the femur was conducted. Search words and phrases used for navigation in the international medical literature platforms were: osteomyelitis, non-union, diagnostic solutions, local antibiotics, biomechanical stability.
Results and Discussion The principles of surgical management of infected non-union of the femur remain the same: (a) adequate soft tissue sampling; (b) thorough debridement; (c) fracture stabilization; (d) dead space and defect management; (e) delivery of local antibiotics and (f) soft tissue coverage. The goal of surgery is to get rid of infection. There is no place for empirical treatment of suspected infection. Therapy should be initiated based upon microbial cultures of deep tissue specimens. While selecting the type of hardware for non-union of the femur, one often encounters a dilemma concerning the most appropriate surgical tool for stabilization. Internal fixation with bone grafting would depend on the size of the gap; commonly defects < 6 cm are treated with this modality. External fixation becomes indispensable in certain scenarios such as poor local skin and soft tissue conditions, associated limb length discrepancy > 2 cm, large defect gaps > 6 cm, concomitant deformity, small fragments or osteopenic bone.
Conclusion Based on this review of current concepts, the authors conclude that there is no ideal or universal approach for management of infected non-union of the femur, and the approach may vary depending on the technical expertise available and the institutional practices. Irrespective of the modality used, the golden rules of fixation remain the same, alignment, preservation of biology, contact of fragments, stability and early restoration of function.
Keywords: osteomyelitis, non-union, femur, diagnostic solutions, local antibiotics, biomechanical stability
Acknowledgement The authors would like to acknowledge the salient contribution of Prof. (Dr) Hemant Sharma, Professor in Trauma & Orthopaedics, Hull Limb Reconstruction & Bone Infection Unit, Hull, UK for his mentorship towards the structuring of this article.
For citation: Kaul R, Dubey RR, Agrawal R, Pande A. Current concepts in the management of infected non-union of the femur: internal versus external fixation. Genij Ortopedii. 2025;31(1):110-118. doi: 10.18019/1028-4427-202531-1-110-118.
© Kaul R., Dubey R.R., Agrawal R., Pande A., 2025
Обзорная статья
УДК 616.718.4-018.46-002-001.58-089.227.84 https://doi.org/10.18019/1028-4427-2025-31-1-110-118
Современные концепции лечения пациентов с инфицированными несращениями бедренной кости: внутренняя и внешняя фиксация
Р. Каул1Н, Р.Р. Дубей2, Р. Агравал3, А. Панде4
1 Военный госпиталь Дехрадун, Дехрадун, Индия
2 Медицинский колледж вооруженных сил, Пуна, Индия
3 Ортопедическая больница и научно-исследовательский институт Агравал, Горакхпур,-Уттар-Прадеш, Индия
4 Базовый госпиталь Лакхнау, Уттар-Прадеш, Индия
Автор, ответственный за переписку: Раджив Каул, [email protected] Аннотация
Введение. Лечение пациентов с инфицированными несращениями костей по-прежнему является сложной задачей для хирурга-ортопеда из-за возникновения микробной резистентности, неудачной фиксации, частых повторных переломов и рецидива ранее купированного инфекционного процесса.
Цель работы — на основе анализа литературы и собственного хирургического опыта структурировать подход к лечению пациентов с инфицированными несращениями бедренной кости.
Материалы и методы. Проведен подробный анализ литературы, включая современные методы лечения инфекций, возникающих при переломах и несращениях бедренной кости. Поисковые слова и словосочетания, использованные для навигации на международных платформах медицинской литературы: osteomyelitis, non-unions, femur, diagnostic solutions, local antibiotics, biomechanical stability. Результаты и обсуждение. Принципы хирургического лечения инфицированного несращения бедренной кости остаются прежними: (a) адекватный забор образцов мягких тканей; (б) тщательная хирургическая обработка; (в) стабилизация перелома; (г) восполнение дефекта после санации; (д) применение местных антибиотиков и (е) замещение мягкотканного дефекта. Целью хирургической операции является ликвидация инфекции. Подбор лечения при предполагаемой инфекции не должен быть эмпирическим. Медикаментозную терапию следует начинать на основе микробных культур образцов глубоких тканей. При выборе типа фиксации несращения бедренной кости часто возникает дилемма относительно наиболее подходящего хирургического инструмента для стабилизации. Внутренняя фиксация с костной пластикой будет зависеть от размера костного дефекта; обычно этот метод применяют при дефектах < 6 см. Внешняя фиксация является незаменимой в определенных ситуациях, таких как плохое местное состояние кожи и мягких тканей, сопутствующая разница в длине конечностей > 2 см, дефекты кости > 6 см, сопутствующая деформация, небольшие костные фрагменты или остеопения.
Заключение. Основываясь на современных концепциях, авторы приходят к выводу, что не существует идеального или универсального подхода к лечению пациентов с инфицированным несращением бедренной кости, возможные варианты зависят от имеющегося технического опыта и практики медицинского учреждения. Независимо от используемого метода, золотые правила фиксации остаются неизменными: выравнивание оси, сохранение биологии, плотный контакт костных фрагментов и стабильность, а также раннее восстановление функции.
Ключевые слова: остеомиелит, несращение, диагностические решения, местные антибиотики, биомеханическая стабильность
Благодарность. Авторы выражают признательность Hemant Sharma, профессору травматологии и ортопедии отделения реконструкции конечностей и костных инфекций, г. Халл, Великобритания, за его наставничество в структурировании этой статьи.
Для цитирования: Каул Р., Дубей Р.Р., Агравал Р., Панде А. Современные концепции лечения пациентов с инфицированными несращениями бедренной кости: внутренняя и внешняя фиксация. Гений ортопедии. 2025;31(1):110-118. doi: 10.18019/1028-4427-2025-31-1-110-118.
© Каул Р., Дубей Р.Р., Агравал Р., Панде А., 2025
INTRODUCTION
The term 'infected non-union' of long bones has now been largely replaced by the term 'fracture related infection' (FRI) based upon the research conducted by the FRI consensus group in 2018 [1]. The term 'FRI' encompasses: (a) all infections which occur in the presence of a fracture; (b) early infection around a fracture;
(c) infected non-unions; (d) haematogenous infections following fracture healing and (e) infections in fractures with no internal fixation. The diagnostic criteria for FRI include serum inflammatory markers, medical imaging, microbiology, molecular biology, and histopathology [2]. Standard diagnostic aids are mandatory in all cases, such as total leukocyte count (TLC), C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), of which, CRP is the most useful serum inflammatory marker [2] with a sensitivity ranging between 60-100 % and specificity between 34.3 % and 85.7 %.Newer modalities which are useful in prosthetic joint infections, such as biomarkers in synovial fluid, namely interleukin 6 (IL-6), leukocyte esterase strips, alpha defensin and synovial fluid CRP, are yet to establish a role in FRI [3]. Conventional radiography may not give much information, but sinograms are extremely useful to indicate where the discharge leads to, superficial or deeper tissues. Computerized tomography (CT) can detect bone resorption, sequestration, periosteal or endosteal new bone formation, cortical irregularities, and atrophic non-union. Magnetic resonance imaging (MRI) can differentiate between bone and soft tissue infection. Bone scans have a high sensitivity but low specificity for infections [4]. The most recent diagnostic adjunct is 18-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET), which can detect the extent of infection in remote locations, especially intramedullary, and in the presence of an implant. Many studies have reported a high sensitivity and positive predictive value in patients for whom clinical findings are inconclusive for a local infection [5].
METHODS
A detailed analysis of literature, including current updates on the management of fracture related infections (FRI) and non-unions was conducted, with the objective of simplifying and putting together a structured approach in the management of infected non-unions of the femur. Search words and phrases used for navigation in the international medical literature platforms were: osteomyelitis, non-union, femur, diagnostic solutions, local antibiotics, biomechanical stability. Key points are enlisted below.
RESULTS AND DISCUSSION A. Approach to surgical management
The principles of surgical management of infected non-unions remain the same, irrespective of the anatomical location, and these are: (a) adequate soft tissue sampling; (b) thorough debridement; (c) fracture stabilization;
(d) dead space and defect management; (e) delivery of local antibiotics and (f) soft tissue coverage [6]. These are discussed as under.
a-b) Debridement and sampling One must have clarity on 'what' and 'how much' to take out, since all sclerotic bone is not necessarily dead bone. An MRI/PET scan can provide valuable information and aids in decision making [7]. The role of methylene blue is debatable, but can be a useful adjunct in determining the extent of inviable bone [8]. It is essential to administer antibiotics immediately after sampling [9]. If the patient was previously on antibiotics, an antibiotic free holiday of at least 1-2 weeks is mandatory [10]. Five or more deep tissue samples should be collected in separate containers, using un-used surgical instruments for each sample [2]. Samples should preferably be inoculated directly into the culture broth. Superficial, skin, or sinus tract, swabs should not to be used.
c) Fracture stabilization The peculiarities of the femur include large deforming muscular forces which tend to pull the proximal femur into flexion and abduction, thereby creating a varus and procurvatum deformity of the proximal femur. This is especially true when a subtrochanteric corticotomy is used for lengthening along with an external fixator [11]. The deforming forces can be overcome by using a sturdy construct consisting of 4-5 Shanz pins in the proximal segment in a 'delta' configuration, or by using commercially available clamp modifications (ALFA fixator, SH Pitkar, Pune, India), which can accommodate up to 5 pins in the same plane or in two planes at a variable angle, as highlighted in Figure 1.
Large ring fixators in the femur are poorly tolerated by patients due to difficulty in maintaining personal hygiene, the need for a modified bed to accommodate the frame and the laboriousness in ambulation [12]. Possible remedies include the use of a monolateral rail fixator, with pins driven up into the neck for a stronger purchase, where the bone stock is better as compared to the trochanteric region. The swivel clamp of the rail fixator is very useful in this regard (Fig. 2). The rail fixator weighs less and is less cumbersome to the patient [12].
Fig. 1. (A) Clamp with 5 pins in same direction; (B) Clamp with 5 pins with variable angle adjustment and its clinical application in the proximal femur
Fig. 2. Swivel clamp of the rail fixator system with pins that can be angled upwards into the femoral neck; care is taken to ensure their central location in the lateral view
For small fragments, such as the distal femur condylar block, or osteopenic bone or those with pre-existing knee stifness, a knee-spanning construct is desirable to counterbalance undesirable movements at the non-union site, consequent to a long lever arm [13]. Spanning frames may be hinged (commercially available) or non-hinged and can be taken off after satisfactory union has been achieved to resume range of motion (ROM) exercises (Fig. 3). A quadriceps-plasty may be added at the end in cases of residual knee stiffness [14]. The use of olive wires can be extremely useful in tackling small coronal plane fragments [15], wherein the wires are placed perpendicular to the fracture plane and tensioned using a traction assembly to achieve interfragmentary compression and union (Fig. 4).
d) Defect management Detailed description of defect management is beyond the scope of this study, hence, a generalised approach [1] to defect management is summarized as a flow chart in Figure 5.
e) Local antibiotic delivery This is the crux of treatment. Commonly used vehicles for local antibiotic delivery include polymethyl methacrylate (PMMA) cement spacers or beads on a string, the 'bead pouch' technique [17], cement coated nails, antibiotic coated implants, and absorbable calcium sulphate-based carriers, and are selected depending upon the availability of resources and anatomical location of the infection [6]. The choice and duration of antibiotics is a topic of contention. General guidelines are as follows [6]; the antibiotic should be (a) heat stable, (b) be available in powder form, (c) should not be
cytotoxic to host tissues, (d) have minimal systemic side effects and (e) released at concentrations exceeding several times the minimum inhibitory concentration (MIC). Note that cement can hold up to 8 g of antibiotics per 40 g of PMMA [18]. The combined duration of parenteral and oral antibiotics is generally 6-12 weeks, in consultation with the infectious diseases' specialist [19].
Fig. 3. (A) Commercially available modular knee spanning frame with articulating knee hinge; (B) indigenous modification of the same using Ilizarov components
Fig. 4. (A, B) Infected non-union Hoffa fracture with a small, osteopenic, condylar segment; (C) counter-opposed olive wires are driven from down upwards, perpendicular to fracture plane (in red), and tensioned using a traction assembly at the top to achieve interfragmentary compression, resulting in union (D)
Bone defect
Doubt of infection?—Yes-
< 4-6 cm Bone grafting - Autograft Allograft + B MAC/BMP
> 4-6 cm
Antibiotic spacer
/ Induced membrane Bone transport
Good ST cover? ^
ъ
\
Fig. 5. Approach for dead space and defect management
Microsurgery available FLAP + Induced membrane + BT Not available Compression-distraction osteogenesis
f) Soft tissue coverage Early flap cover for exposed bone or musculo-tendinous units should be performed as soon as possible, once the general condition of the patient stabilizes. For this, a close association between the orthopaedic and plastic surgeons is warranted, often referred as the 'ortho-plastic' approach [20]. For uncomplicated, discharging wounds, negative pressure wound therapy (NPWT) is an extremely rewarding modality, with several advantages [21] such as (a) enhancement of wound healing, (b) cyclic cleansing and dilution of wound debris, (c) disruption of biofilm, (d) accelerated granulation tissue formation and (e) earlier reduction in wound size.
Rehabilitation phase Bracing is highly recommended to protect the regenerated bone and the healed non-union site from re-fracture (Fig. 6) and should be continued for a period of 2-3 months following frame removal [22]. Early weight bearing with an appropriate walking aid and active ROM exercises are quintessential.
Fig. 6. Customised thigh brace for post-operative rehabilitation in non-union of the distal femur B. Implant selection: internal versus external fixation
While selecting the type of hardware for non-unions of the femur, one often encounters a dilemma concerning the most appropriate surgical tool for stabilization. The following guidelines have been drafted to help simplify the arduous task of decision making.
Choice of internal fixation
1. Bulky frames result in poor compliance. Long periods in a frame can cause tremendous psychiatric problems and considerable patient discomfort and dissatisfaction [11].
2. Due to closely spaced components, frames leave little space for future reconstructive surgery, such as flap cover and bone grafting.
Pre-requisites to be fulfilled Internal fixation with bone grafting would depend on the size of the gap; commonly defects < 6 cm are treated with this modality [23]. The distal fragment should be of sufficient size to hold screws. The plate should be a robust, locking plate and long enough for adequate stability [22]. It may be augmented with a medial plate or a plate can be augmented over a retained nail. Cortical auto- or allografts, such as a non-vascularised fibula, provide additional stability, in combination with locking plates [22]
The induced membrane technique, first described by AC Masquelet [24] in 1986, is based upon the principle that the cement spacer provokes a biological reaction resulting in a pseudo-synovial membrane formation, which is rich in BMPs and TGF Beta, VEG-F, angiotensin 2, vWF and prevents graft resorption at the second stage. The second step is performed 6-8 weeks later, in which bone grafting is done, and may be augmented with bone substitutes (in the ratio < 1:2), only after infection has been cleared. One must try to close the membrane over the graft, without packing it too tightly. Several studies have also reported satisfactory outcomes with a single stage protocol, consisting of debridement and internal fixation with bone grafting [25]. The choice ultimately depends upon the surgeon's preference and institutional practices. Disadvantages of internal fixation include a prolonged period of non-weight bearing ambulation and its limited application in large sized bone defects (> 6 cm) or small fragments [23].
Choice of external fixation:
External fixation becomes indispensable in certain scenarios such as:
1. Poor local skin and soft tissue conditions.
2. Associated limb length discrepancy > 2 cm [26].
3. Large gaps > 6 cm.
4. Concomitant deformity.
5. Small fragments or osteopenic bone.
Salvaging traumatised limbs with bone loss has always been a vexing challenge for orthopaedic surgeons across the globe. Initial attempts were often plagued by downright failure or unacceptable functionality. The introduction of the Ilizarov method instilled hope for many patients and physicians alike and produced remarkable results [27]. It has been adopted as the last resort in the management of segmental bone defects and non-unions of the lower extremities. Two Ilizarov techniques can be adopted for bone defects: (a) compression with approximation of fragments (resulting in shortening), and concomitant distraction through an osteotomy (for lengthening) or (b) bone transport and regeneration of the missing bone segment through distraction osteogenesis, with subsequent compression at the docking site to achieve union [28]. Either of these methods can be used to address the problems associated with bone defects, namely bone loss, soft tissue loss and infection, without the need for major reconstructive surgery [28]. The intrinsic biomechanical stability of the ring or rail fixators provides the requisite milieu to stimulate neo-histogenesis and promote bone union. Co-existing deformities can be corrected simultaneously and early weight-bearing is possible. Disadvantages of this method include tethering of soft tissues, potential risk of neurovascular injuries, regenerate-associated problems, pin-site infections, and joint stiffness [12, 29].
Choice of implant in proximal femur non-unions:
These are extremely vexing and challenging to treat because of a small sized fragment and difficulty in obtaining adequate purchase in this segment [30]. Ring fixators become cumbersome, especially when rings are used in upper thigh [12]. Monolateral fixators may improve patients' compliance and quality of life, but are delimited by the size and bone quality of the proximal fragment. Antibiotic-cement nails (Fig. 7, Fig. 8) are extremely useful in treating this variant, since they have adequate hold in the small proximal segment, and can address the intramedullary infection [32]. Antibiotic coated plates [33] have also been described, wherein the plate is retained following removal of the cement coating during the second stage, and the gap is bone grafted. Large volumes of bone graft can be obtained by the Reamer Irrigator Aspirator (RIA, De Puy Synthes) in cases of sizeable defects [32].
Fig. 7. (A) Infected non-united subtrochanteric fracture in a 49-year male with multiple previous failed surgeries;
(B) FDG-PET scan showing hot spots in the entire medullary canal and proximal femur;
(C) custom made Ilizarov antibiotic nail, comprising of a threaded rod with posts at either end, coated uniformly with antibiotic impregnated cement (3 such nails were used), to control the medullary infection, until the discharge ceased
Fig. 8. Rail fixator application followed with compression across the non-union (A) to achieve union in about 5 months (B)
CONCLUSION
The authors concluded that there is no ideal or universal approach for management of infected non-unions of the femur, and the approach may vary depending on the technical expertise available and the institutional practices. In general, the following guidelines have been drafted to have a consensus on the modus operandi when dealing with bone infections, and to assist in implant selection for fracture stabilization. The goal of surgery, at the very least, is to get rid of the infection. There is no place for empirical treatment of suspected infection. Therapy should be initiated based upon microbial cultures of deep tissue specimens. Nuclear imaging with localizing scans is the newest refinement in diagnosis and planning. There are multiple ways of treating gaps; in general, small gaps with sizeable fragments are amenable to internal fixation, whereas larger gaps or small sized fragments are better managed with external fixation. The golden rules of fixation remain the same, irrespective of the modality used, and these can be abbreviated as 'ABCF' — restoring Alignment, preservation of Biology, achieving good Contact (stability) and early restoration of Function.
Conflict of interest Not declared. Funding Not declared.
REFERENCES
1. Metsemakers WJ, Morgenstern M, McNally MA, et al. Fracture-related infection: A consensus on definition from an international expert group. Injury. 2018;49(3):505-510. doi: 10.1016/j.injury.2017.08.040.
2. Govaert gAm, Kuehl R, Atkins BL, et al. Diagnosing Fracture-Related Infection: Current Concepts and Recommendations. JOrthop Trauma. 2020 Jan;34(1):8-17. doi: 10.1097/B0T.0000000000001614.
3. Bosch P, IJpma FFA, Govaert GAM, et al. White Blood Cell Scintigraphy for Fracture-Related Infection: Is Semiquantitative Analysis of Equivocal Scans Accurate? Diagnostics (Basel). 2021;11(12):2227. doi: 10.3390/diagnostics11122227.
4. Pineda C, Espinosa R, Pena A. Radiographic imaging in osteomyelitis: the role of plain radiography, computed tomography, ultrasonography, magnetic resonance imaging, and scintigraphy. Semin Plast Surg. 2009;23(2):80-89. doi: 10.1055/s-0029-1214160.
5. Wenter V, Albert NL, Brendel M, et al. [18F]FDG PET accurately differentiates infected and non-infected non-unions after fracture fixation. Eur J Nucl Med Mol Imaging. 2017;44(3):432-440. doi: 10.1007/s00259-016-3528-9.
6. Kates SL, Borens 0. (eds.) Principles of Orthopedic Infection Management. AO Trauma Thieme Verlag; New York, NY, USA: 2016.
7. Demirev A, Weijers R, Geurts J, et al. Comparison of [18 F]FDG PET/CT and MRI in the diagnosis of active osteomyelitis. Skeletal Radiol. 2014;43(5):665-672. doi: 10.1007/s00256-014-1844-3.
8. Shaw JD, Miller S, Plourde A, et al. Methylene Blue-Guided Debridement as an Intraoperative Adjunct for the Surgical Treatment of Periprosthetic Joint Infection. J Arthroplasty. 2017;32(12):3718-3723. doi: 10.1016/j.arth.2017.07.019.
9. Chaudhary MM. Infected nonunion of tibia. Indian J Orthop. 2017;51(3):256-268. doi: 10.4103/ortho.IJ0rtho_199_16.
10. Tan TL, Kheir MM, Rondon AJ, et al. Determining the Role and Duration of the "Antibiotic Holiday" Period in Periprosthetic Joint Infection. J Arthroplasty. 2018;33(9):2976-2980. doi: 10.1016/j.arth.2018.04.019.
11. Nayagam S. Femoral lengthening with a rail external fixator: tips and tricks. Strategies Trauma Limb Reconstr. 2010;5(3):137-144. doi: 10.1007/s11751-010-0098-4.
12. Mudiganty S, Daolagupu AK, Sipani AK, et al. Treatment of infected non-unions with segmental defects with a rail fixation system. Strategies Trauma Limb Reconstr. 2017;12(1):45-51. doi: 10.1007/s11751-017-0278-6.
13. Dipak K, Sunny K. The use of the knee spanning Ilizarov method as a treatment procedure in infected nonunion of the distal femur with bone loss. Genij Ortopedii. 2019;25(2):193-198. doi: 10.18019/1028-4427-2019-25-2-193-198.
14. Zhao J. Mini-invasive Ouadriceps-plasty for Severe Flexion-Impeding Knee Stiffness. Arthrosc Tech. 2022;11(4):e645-e653. doi: 10.1016/j.eats.2021.12.021.
15. Kaul R, Akhoon N, Mugdum G, Prasad M. Management of infected nonunions of the femur and tibia with compression-distraction osteogenesis coupled with modern methods at a tertiary military establishment: a prospective case series. Current Orthopaedic Practice. 2021;32(1):23-31. doi: 10.1097/BC0.0000000000000950.
16. Pocket guide to treatment of implant associated infections after fracture fixation. Pro-implant foundation. 2017.
17. Henry SL, Ostermann PA, Seligson D. The antibiotic bead pouch technique. The management of severe compound fractures. Clin Orthop Relat Res. 1993;(295):54-62.
18. Masri BA, Duncan CP, Beauchamp CP. Long-term elution of antibiotics from bone-cement: an in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) system. J Arthroplasty. 1998;13(3):331-338. doi: 10.1016/s0883-5403(98)90179-6.
19. Li HK, Rombach I, Zambellas R, et al. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N Engl J Med. 2019;380(5):425-436. doi: 10.1056/NEJMoa1710926.
20. Heitmann C, Levin LS. The orthoplastic approach for management of the severely traumatized foot and ankle. J Trauma. 2003;54(2):379-390. doi: 10.1097/01.TA.0000028859.26504.7C.
21. Putnis S, Khan WS, Wong JM. Negative pressure wound therapy - a review of its uses in orthopaedic trauma. Open Orthop J. 2014;8:142-147. doi: 10.2174/1874325001408010142.
22. Wang JW, Weng LH. Treatment of distal femoral nonunion with internal fixation, cortical allograft struts, and autogenous bone-grafting. J Bone Joint SurgAm. 2003;85(3):436-440. doi: 10.2106/00004623-200303000-00006.
23. Yoon YC, Oh CW, Cho JW, Oh JK. Early definitive internal fixation for infected nonunion of the lower limb. J Orthop Surg Res. 2021;16(1):632. doi: 10.1186/s13018-021-02785-9.
24. Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41(1):27-37; table of contents. doi: 10.1016/j.ocl.2009.07.011.
25. Prasarn ML, Ahn J, Achor T, et al. Management of infected femoral nonunions with a single-staged protocol utilizing internal fixation. Injury. 2009;40(11):1220-1225. doi: 10.1016/j.injury.2009.06.009.
26. Applebaum A, Nessim A, Cho W. Overview and Spinal Implications of Leg Length Discrepancy: Narrative Review. Clin Orthop Surg. 2021;13(2):127-134. doi: 10.4055/cios20224.
27. Malkova TA, Borzunov DY. International recognition of the Ilizarov bone reconstruction techniques: Current practice and research (dedicated to 100th birthday of G. A. Ilizarov). World J Orthop. 2021;12(8):515-533. doi: 10.5312/wjo.v12.i8.515.
28. Borzunov DY, Kolchin SN, Malkova TA. Role of the Ilizarov non-free bone plasty in the management of long bone defects and nonunion: Problems solved and unsolved. World J Orthop. 2020;11(6):304-318. doi: 10.5312/wjo.v11.i6.304.
29. Blum AL, BongioVanni JC, Morgan SJ, et al. Complications associated with distraction osteogenesis for infected nonunion of the femoral shaft in the presence of a bone defect: a retrospective series. J Bone Joint Surg Br. 2010;92(4):565-570. doi: 10.1302/03 01-620X.92B4.23475.
30. Haidukewych GJ, Berry DJ. Nonunion of fractures of the subtrochanteric region of the femur. Clin Orthop Relat Res. 2004;(419):185-188. doi: 10.1097/00003086-200402000-00030.
31. Cho JW, Kim J, Cho WT, et al. Antibiotic coated hinged threaded rods in the treatment of infected nonunions and intramedullary long bone infections. Injury. 2018;49(10):1912-1921. doi: 10.1016/j.injury.2018.07.016.
32. Cox G, Jones E, McGonagle D, Giannoudis PV. Reamer-irrigator-aspirator indications and clinical results: a systematic review. Int Orthop. 2011;35(7):951-956. doi: 10.1007/s00264-010-1189-z.
33. Conway JD, Hlad LM, Bark SE. Antibiotic cement-coated plates for management of infected fractures. Am J Orthop (Belle Mead NJ). 2015;44(2):E49-53.
The article was submitted 29.08.2024; approved after reviewing 15.10.2024; accepted for publication 10.12.2024. Статья поступила 29.08.2024; одобрена после рецензирования 15.10.2024; принята к публикации 10.12.2024. Information about the authors:
Rajiv Kaul - MS (Orth), DNB (Orth), Associate Professor (Orthopaedics), MRCPS (Glasg), Dip SICOT, [email protected], https://orcid.org/0000-0002-6870-9206;
Rajiv Ranjan Dubey — MS (Orth), DNB (Orth), Assistant Professor (Sports Medicine), [email protected], https://orcid.org/0000-0002-7929-0658;
Rajat Agrawal — MS (Orth), Director, President of ASAMI India, [email protected]; Ashish Pande — MS (Orth), DNB (Orth), Professor (Orthopaedics), [email protected].
Информация об авторах:
Раджив Каул — доктор, магистр (ортопедия), дипломированный специалист в области ортопедии, доцент (ортопедия), член Королевского колледжа хирургов (Глазго), дипломированный специалист по ортопедии (SICOT), [email protected], https://orcid.org/0000-0002-6870-9206;
Раджив Ранджан Дубей — доктор, магистр (ортопедия), дипломированный специалист в области ортопедии,
доцент (спортивная медицина), [email protected], https://orcid.org/0000-0002-7929-0658;
Раджат Агравал — доктор, магистр (ортопедия), директор, президент ASAMI India, [email protected];
Ашиш Панде — доктор, магистр (ортопедия), дипломированный специалист в области ортопедии, [email protected].