Научная статья на тему '风, 光, 水储发电系统协调控制策略'

风, 光, 水储发电系统协调控制策略 Текст научной статьи по специальности «Техника и технологии»

CC BY
1
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
风力发电 / 光伏发电 / 水轮机发电 / 互补系统 / wind power generation / Photovoltaic power generation / hydro turbine power generation / complementary system

Аннотация научной статьи по технике и технологии, автор научной работы — Jia Zhengyi

随着可再生能源的快速发展, 风力发电, 太阳能发电和水力发电作为清洁能源的代表, 其互补性研究对于提高能源利用效率具有重要意义. 本文通过建模分析, 研究了风力, 光伏和水力发电系统的协调控制策略, 旨在实现这三种发电方式的优化互补. 通过 MATLAB/Simulink 软件建立了发电系统的仿真模型, 并探讨了不同季节下能源互补的有效性. 研究结果表明, 所提出的控制策略能够有效提升系统的稳定性和发电效率.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Coordinated control strategy of wind-solar-hydro-storage power generation system

With the rapid development of renewable energy, wind power generation, solar power generation and hydroelectric power generation, as representatives of clean energy, the research on their complementarity is of great significance for improving energy utilization efficiency. Through simulation, this article studies the coordinated control strategy of wind, photovoltaic, and hydroelectric power generation systems through modeling analysis, aiming to achieve the optimal complementarity of these three power generation methods. The simulation model of the power generation system is established by MATLAB/Simulink software, and the effectiveness of energy complementarity in different seasons is discussed. The research results show that the proposed control strategy can effectively improve the stability and power generation efficiency of the system.

Текст научной работы на тему «风, 光, 水储发电系统协调控制策略»

For citation-. Jia Zhengyi. Coordinated control strategy of wind-solar-hydro-storage power generation system // Grand Altai Research & Education — Issue 2 (22)'2024 (DOI: 10.25712/ASTU.2410-485X.2024.02) — EDN. https://elibrary.ru/NBVWCL

UDK 343.711.63

Coordinated control strategy

of wind-solar-hydro-storage power generation system

Jia Zhengyi1

1 Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, 430073, China

E-mail: 337906180@qq.com

Abstract. With the rapid development of renewable energy, wind power generation, solar power generation and hydroelectric power generation, as representatives of clean energy, the research on their complementarity is of great significance for improving energy utilization efficiency. Through simulation, this article studies the coordinated control strategy of wind, photovoltaic, and hydroelectric power generation systems through modeling analysis, aiming to achieve the optimal complementarity of these three power generation methods. The simulation model of the power generation system is established by MATLAB/Simulink software, and the effectiveness of energy complementarity in different seasons is discussed. The research results show that the proposed control strategy can effectively improve the stability and power generation efficiency of the system.

Keywords: wind power generation; Photovoltaic power generation; hydro turbine power generation; complementary system

1 mrnrnx^, +a, 430073

E-mail: 337906180@qq.com

Km, mntm^, li^i^H^t^

aa MATLAB/Simulink #

0 Ц\т

ш, мтшшшт, те^шш, ^ииш^хт^йшшота тшшшх. яхшшшя, шшш&шшшмш, ж

1 шжш^т

ШШ MATLAB/Simulink ШММШ&, Ш&ШуКЯШМ

тш т тштш, шт^п-шушшшш.

i.i тшшжш

а

штж ш^шшш, ушпшшшштш^штит, ш ^щ^тшш^штмш, т ш

ттшш&ш. pmsm шиш, ^жэд^тшжаштд^

шшмш^шж.

д, штямш^шшя. мшдш ж^одмш^шшш Ш [2], ш^жшшшх шш&ммш

ъшшшишш, шшштмях^ш.

шгмдмажшет Simulink

тшш*.

Figure 1. The model of wind power generation system

1.2 шжштш

ш&ш, шшшштт. Мшша шшш^

МЩ&ШШ2 [3].

Figure 2. The equivalent circuit of a single photovoltaic cell

iMXftM^ffi^A, alpha ffiM^l ^0, №

k o # « zmternrnw., ISM HM^^MML {MM, ^mmffife

ma. mmmmmm^rnMA^^^m

Boost *

[3].

II L D

Щ3 Boost

Figure 3. Boost Circuit schematic diagram

Boost ^wim^R^ww k н, ^ww K т

^ш, ш^шш D, м^ш L шш;

kWH, ^^ к т^тт%±шт, ШЪЙШМФ, мц^ш

тшш к ц^шш D

шх±ттш, тттштт Boost

д, \>тшшшлшш%. шпшш шшшшлшшж

Ш [4], ышмшж^шшх

Figure 4. The model of photovoltaic power generation

1.3

й.

ъш'вшмтшттуттмт, жшт, а^т, ж, мтя

й5 утш^ттттшшш

Figure 5. The basic structure of the dynamic model of the water turbine regulation system

«ЯШАЙАШ/КААШШ^Ш^, штяшшштт ^îTTTM^«. жшштш^шшв ш [6].

®6

Figure 6. The model of a water turbine generator set

2

[1] 2022.

D01:10.27409/d.cnki.gxbnu.2022.000694.

[2] mxfe. m^^Ä^^I^^d]. itmtxx^, 2013.

[3] M^m. mrnx^, 2019.

[4] nu. itM^rnx^, 2011.

[5] 2020.

D0I:10.27409/d.cnki.gxbnu.2020.000574.

[6] 2005. References

[1] Xiong Hualin. Capacity Allocation and Optimal Scheduling of a Hydro-Wind-Solar Complementary Power Generation System [D]. Northwest A&F University, 2022. DOI: 10.27409/d.cnki.gxbnu.2022.000694.

[2] Yang Tianzhi. Modeling and Development of a Wind Power Generation Simulation System [D]. Beijing University of Chemical Technology, 2013.

[3] Yuan Haoran. Research on Power Coordination Control Strategy of Wind-Solar Complementary Power Generation System [D]. Xinjiang University, 2019.

[4] Liu Yi. Modeling and Simulation of a Photovoltaic Grid — connected Power Generation System [D]. Beijing Jiaotong University, 2011.

[5] Li Jianling. Modeling and Vibration Characteristics of Hydro Turbine Generator Shaft System [D]. Northwest A&F University, 2020. DOI: 10.27409/d.cnki.gxbnu.2020.000574

[6] Luo Xuan. Research and Simulation of Hydro Turbine Governor System [D]. Huazhong University of Science and Technology, 2005.

i Надоели баннеры? Вы всегда можете отключить рекламу.