For citation-. Jia Zhengyi. Coordinated control strategy of wind-solar-hydro-storage power generation system // Grand Altai Research & Education — Issue 2 (22)'2024 (DOI: 10.25712/ASTU.2410-485X.2024.02) — EDN. https://elibrary.ru/NBVWCL
UDK 343.711.63
Coordinated control strategy
of wind-solar-hydro-storage power generation system
Jia Zhengyi1
1 Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, 430073, China
E-mail: 337906180@qq.com
Abstract. With the rapid development of renewable energy, wind power generation, solar power generation and hydroelectric power generation, as representatives of clean energy, the research on their complementarity is of great significance for improving energy utilization efficiency. Through simulation, this article studies the coordinated control strategy of wind, photovoltaic, and hydroelectric power generation systems through modeling analysis, aiming to achieve the optimal complementarity of these three power generation methods. The simulation model of the power generation system is established by MATLAB/Simulink software, and the effectiveness of energy complementarity in different seasons is discussed. The research results show that the proposed control strategy can effectively improve the stability and power generation efficiency of the system.
Keywords: wind power generation; Photovoltaic power generation; hydro turbine power generation; complementary system
1 mrnrnx^, +a, 430073
E-mail: 337906180@qq.com
Km, mntm^, li^i^H^t^
aa MATLAB/Simulink #
0 Ц\т
ш, мтшшшт, те^шш, ^ииш^хт^йшшота тшшшх. яхшшшя, шшш&шшшмш, ж
1 шжш^т
ШШ MATLAB/Simulink ШММШ&, Ш&ШуКЯШМ
тш т тштш, шт^п-шушшшш.
i.i тшшжш
а
штж ш^шшш, ушпшшшштш^штит, ш ^щ^тшш^штмш, т ш
ттшш&ш. pmsm шиш, ^жэд^тшжаштд^
шшмш^шж.
д, штямш^шшя. мшдш ж^одмш^шшш Ш [2], ш^жшшшх шш&ммш
ъшшшишш, шшштмях^ш.
шгмдмажшет Simulink
тшш*.
Figure 1. The model of wind power generation system
1.2 шжштш
ш&ш, шшшштт. Мшша шшш^
МЩ&ШШ2 [3].
Figure 2. The equivalent circuit of a single photovoltaic cell
iMXftM^ffi^A, alpha ffiM^l ^0, №
k o # « zmternrnw., ISM HM^^MML {MM, ^mmffife
ma. mmmmmm^rnMA^^^m
Boost *
[3].
II L D
Щ3 Boost
Figure 3. Boost Circuit schematic diagram
Boost ^wim^R^ww k н, ^ww K т
^ш, ш^шш D, м^ш L шш;
kWH, ^^ к т^тт%±шт, ШЪЙШМФ, мц^ш
тшш к ц^шш D
шх±ттш, тттштт Boost
д, \>тшшшлшш%. шпшш шшшшлшшж
Ш [4], ышмшж^шшх
Figure 4. The model of photovoltaic power generation
1.3
й.
ъш'вшмтшттуттмт, жшт, а^т, ж, мтя
й5 утш^ттттшшш
Figure 5. The basic structure of the dynamic model of the water turbine regulation system
«ЯШАЙАШ/КААШШ^Ш^, штяшшштт ^îTTTM^«. жшштш^шшв ш [6].
®6
Figure 6. The model of a water turbine generator set
2
[1] 2022.
D01:10.27409/d.cnki.gxbnu.2022.000694.
[2] mxfe. m^^Ä^^I^^d]. itmtxx^, 2013.
[3] M^m. mrnx^, 2019.
[4] nu. itM^rnx^, 2011.
[5] 2020.
D0I:10.27409/d.cnki.gxbnu.2020.000574.
[6] 2005. References
[1] Xiong Hualin. Capacity Allocation and Optimal Scheduling of a Hydro-Wind-Solar Complementary Power Generation System [D]. Northwest A&F University, 2022. DOI: 10.27409/d.cnki.gxbnu.2022.000694.
[2] Yang Tianzhi. Modeling and Development of a Wind Power Generation Simulation System [D]. Beijing University of Chemical Technology, 2013.
[3] Yuan Haoran. Research on Power Coordination Control Strategy of Wind-Solar Complementary Power Generation System [D]. Xinjiang University, 2019.
[4] Liu Yi. Modeling and Simulation of a Photovoltaic Grid — connected Power Generation System [D]. Beijing Jiaotong University, 2011.
[5] Li Jianling. Modeling and Vibration Characteristics of Hydro Turbine Generator Shaft System [D]. Northwest A&F University, 2020. DOI: 10.27409/d.cnki.gxbnu.2020.000574
[6] Luo Xuan. Research and Simulation of Hydro Turbine Governor System [D]. Huazhong University of Science and Technology, 2005.