W 69.07
doi: 10.55287/22275398_2023_3_87
COMPARISON OF STEEL FRAME ELEMENTS DESIGN USING SP16.1330.2017 AND AISC
G. E. Okolnikova * / ** T. H. Gebre *
A. N. Al Amin* R. D. Gamzatov *
B. Erdogan*
A. A. Filippova *
* Peoples' Friendship University of Russia (RUDN University), Moscow
** Moscow State University of Civil Engineering (National Research University) (MGSU), Moscow
z
M
O
Abstract
This paper presents a comprehensive comparison of design guidelines for steel design elements as stipulated by the American Institute of Steel Construction and Russian Standers. By evaluating these prominent design codes, the aim is to identify similarities, differences, and potential implications on the structural behaviour and performance of steel truss systems. The analysis encompasses crucial aspects such as load combinations, material properties, member design, stability checks, and connection design. The study critically examines both specifications, highlighting their strengths and limitations, in order to provide valuable insights for structural engineers and designers when selecting an appropriate design code for steel truss elements, considering factors such as project location, regulatory requirements, and design objectives.
The Keywords
material properties, member design, stability checks, connection design force method, frame structure, continues beam, steel
Date of receipt in edition
12.06.2023
Date of acceptance for printing
17.06.2023
Introduction: SP16.13330.2017 and AISC
The American Institute of Steel Construction (AISC) certifies structural steel manufacturers and builders. Steel construction manufacturers, such as bridge and highway component makers, are accredited. AISC Specification recommends design and construction for structural steel and other buildings. [1] - [4]. AISC's "ANSI/AISC 360-16 Specification for Structural Steel Buildings" is referenced in the International Building Code. [5] - [7]. Russian steel structural design standard SP. LSD designs beams, columns, and connectors. SP designs fire-resistant steel structures. Steel frames support steel-framed buildings. Columns, beams, trusses, and braces carry structure loads to the base. Columns support construction [8 - 10]. They
< .
I- ri
111 Q
S « 1 =
^ <u
z '
tfl
-J ^
< c
, (U iu c
si
iu <u U <U
* s
■ L
I- ^
<T ®
5 <u >
O w
SS K-
E O
z C
ri ° O m
O |o
ui £
■ o U u
withstand compression. Beams support floors and roofs between columns. They're bendable. Triangles form trusses. They support long-distance roofs and floors. Trusses resist bending and axial load. Diagonal braces stabilise structures. They keep wind and earthquake loads from deforming the building. Steel frame element design involves assessing the structure's loads and selecting members and connections that can handle them. [11] - [15]. Designing for safety and durability requires material properties, structural evaluations, and safety requirements. AISC uses LRFD and ASD forms in one document [16 - 18]. SP has subparts. Depending on the load-bearing material, structure type, and function, each section covers a certain structural type like buildings, bridges, towers, silos, etc. Sections of SP are numbered [19 - 22]. AISC has compact, non-compact, and thin sections. The Seismic Provisions for Structural Steel Buildings includes a seismically compact classification. Seismically Compact, Compact, Non-compact, Slender, or Too Slender sections have different nominal flexure strengths. Seismically compact sections can attain full plastic strength before local buckling [23 - 28]. Based on the computed section's stress-strain condition, SP classifies structural parts as class 3, class 2, or class 1. Compression flanges cannot be class 4 since SP does not allow local buckling.
AISC and Russian standards (SP) steel structure results disagree. For the continuous beam, moments, deflection, and shear forces diverge by 0.043%, 0.059, and 0.048%, respectively. For several case studies, the AISC code and Russian SP16 have a minimum error of 0.001% and 0.008%, respectively. The AISC and Russian SP16 codes yield very different values. AISC code computations are faster. SP16 deflects less. AISC and Russian SP16 outperform numerical and analytical approaches for complicated engineering problems.
Methodology
Structural steel design is essential for cost-effective engineering and construction. Design and architecture standards follow local building codes. Consider steel structure weight. This article compares the AISC Standard and Russian SP Code self-weight of a six-story steel construction.
Table 1
Self weight with materials used for AISC and SP16
Type of Building AISC SP 17
Material Name A992Fy50 C245
Self-Weight, KN 5526.5931 3884.0704
AISC produced the international AISC Standard. AISC creates steel industrial architecture. Modern materials, methods, and processes provide safety, structural integrity, and cost-effectiveness.
Fig. 1. Self weight of structure according to AISC and SP 16
Design approaches differ. The AISC standard specifies steel frame material and procedure, while the SP16 code determines structure self-weight using steel unit density. The AISC standard analyses local construction requirements, while the SP16 code considers seismic forces.
Steel structure design should follow local construction codes, design standards, and architecture needs. The AISC Standard and Russian SP16 code determine steel structural self-weight. Construction standards and SP16 seismic forces are considered by AISC.
Frame sections HP200X53-1 are a type of structural steel that is intended for usage in building projects. It has a "I/wide flange" form and a 68.4 cm2 surface area. The portion is made of a bright red-painted A992Fy50 steel, which was utilized to manufacture it.
z
M Û -I M
D
0Û
Fig. 2. Sectional view and Structural layout for slab floor
< .
i- À
LU CT
c
2 «
s =
< c
^ «
«E
m c
m v
(J eu
* I
■ L
<f «
5 (U
O w
5 o
Z c
ri 0
O M
* "I
O £
m E
■ o
(j (j
Due to its numerous uses, the frame section HP200X53-1 is one of the most adaptable structural steel forms available. It is appropriate for columns, girders, and beams. It is also perfect for building bridges, tall buildings, and other substantial constructions.
Fig. 3. Plane column from ETABS
This frame section may be made out of A992Fy50 steel since it is stronger than conventional steel and has higher tensile strength. For further longevity, it also offers great fatigue strength, corrosion resistance, and weldability. Additionally, it has a low carbon content, making it a sustainable option.
Fig. 4. Plan and sectional view
The red paint on the structural steel form for HP200X53-1 helps to reduce maintenance needs by providing additional weathering protection. The coating also provides the form a sleek, contemporary appearance, which is a fantastic approach to improve the aesthetics of any construction endeavour.
Frame sections for AISC
Table 2
Name Material Shape Color Area cm2 J cm4 133 cm4 122 cm4 As2 cm2 As3 cm2
HP200x53-1 A992Fy50 Steel I / Wide Flange Red 68.4 32 4950 1680 23.1 39
HP250x62-1 A992Fy50 Steel I / Wide Flange Magenta 80 33.8 8740 2980 25.8 45.8
HP250x85-1 A992Fy50 Steel I / Wide Flange Yellow 108 82 12200 4200 36.6 62.2
HP310x110-1 A992Fy50 Steel I / Wide Flange Green 141 124 23700 7740 47.3 80.1
HP310x125-1 A992Fy50 Steel I / Wide Flange Cyan 159 176 27100 8870 54.3 90.5
HP310x132-1 A992Fy50 Steel I / Wide Flange Red 167 205 28800 9320 57.6 95.2
HP310x79-1 A992Fy50 Steel I / Wide Flange Gray&Dark 100 46.6 16400 5290 33 55.9
HP310x93-1 A992Fy50 Steel I / Wide Flange Blue 119 76.2 19600 6370 39.6 67
HP360x108-1 A992Fy50 Steel I / Wide Flange Magenta 138 83.7 30300 10900 44.2 79.1
HP360x132-1 A992Fy50 Steel I / Wide Flange Yellow 168 149 37600 13600 54.8 97
HP360x152-1 A992Fy50 Steel I / Wide Flange Gray&Dark 194 224 43700 15800 63.7 112.2
HP360x174-1 A992Fy50 Steel I / Wide Flange Blue 222 334 50800 18400 73.6 128.5
HP410x131-1 A992Fy50 Steel I / Wide Flange Green 166 144 46200 14500 53.3 91.1
HP410x151-1 A992Fy50 Steel I / Wide Flange Cyan 193 211 54100 17100 62.6 106.3
HP410x181-1 A992Fy50 Steel I / Wide Flange Red 231 348 66200 21000 76.6 128.6
HP410x211-1 A992Fy50 Steel I / Wide Flange Magenta 269 537 77800 24900 90.1 150.2
HP410x242-1 A992Fy50 Steel I / Wide Flange Yellow 308 783 91200 29000 105.2 173.1
HP410x272-1 A992Fy50 Steel I / Wide Flange Gray&Dark 349 1120 104000 34000 120.3 198
HP460x202-1 A992Fy50 Steel I / Wide Flange Blue 257 380 91600 29400 85 143.9
HP460x234-1 A992Fy50 Steel I / Wide Flange Green 298 579 107000 34700 99.7 167.6
HP460x269-1 A992Fy50 Steel I / Wide Flange Cyan 343 862 126000 40500 116.1 193.5
HP460x304-1 A992Fy50 Steel I / Wide Flange Red 388 1230 145000 46600 133.5 220
M 100x4.3-1 A992Fy50 Steel I / Wide Flange Magenta 5.9 0.3 62.4 10.3 1.7 3.1
M 100x4.8-1 A992Fy50 Steel I / Wide Flange Yellow 6.5 0.3 119 10.3 2.4 3.1
M 100x5.1-1 A992Fy50 Steel I / Wide Flange Gray&Dark 6.5 0.3 119 10.3 2.4 3.1
M 100x6.1-1 A992Fy50 Steel I / Wide Flange Blue 8.2 0.6 147 13.5 3 4.1
M 100x8.9-1 A992Fy50 Steel I / Wide Flange Green 11.3 0.8 196 61.2 3.2 6.5
See the continuatin of table 2 on the next page
{J
z
M
O
-I
M
D CD
< . H
LLI
z
M
z <
I- ri
IM Q
c w 3
c
"tfl <U
■a m < c
, <U IU tt CQ
UJ <U
O <U
* S
■ L
< z
E
<U
^ « > -M
o w
SS K-
E o
z C
ri ° O m
* z
O |o
m E ■ o
u u
Name Material Shape Color Area cm2 J cm4 133 cm4 122 cm4 As2 cm2 As3 cm2
M 130x28.1-1 A992Fy50 Steel I / Wide Flange Cyan 35.9 13 1010 362 10.2 22.4
M 150x5.5-1 A992Fy50 Steel I / Wide Flange Red 7 0.2 248 7.2 3.7 2.8
M 150x6.6-1 A992Fy50 Steel I / Wide Flange Magenta 8.3 0.4 301 7.5 4.4 3.4
M 200x9.2-1 A992Fy50 Steel I / Wide Flange Yellow 11.7 0.6 733 14.7 6.7 4.3
M 200x9.7-1 A992Fy50 Steel I / Wide Flange Gray&Dark 12.4 0.8 770 15.7 7 4.6
M 250x11.2-1 A992Fy50 Steel I / Wide Flange Blue 14.3 0.8 1370 23.4 8.4 5
M 250x11.9-1 A992Fy50 Steel I / Wide Flange Green 15.3 0.9 1440 24.7 9.1 5.3
M 250x13.4-1 A992Fy50 Steel I / Wide Flange Cyan 17.1 1.3 1620 28 10.1 6
Due to their size, form, and construction, these frame sections are a great option for many building projects. Any project or construction may benefit from its strength, durability, and aesthetic appeal to seem more polished, secure, and contemporary.
Table 3
Frame sections for Russian code SP16 Name Material Shape Color Area cm2 J cm4 133 cm4 122 cm4 As2 cm2
I section Auto Select
fl6(CTO)10E1 C245 (2...20 cm) Steel I / Wide Flange Magenta 10.3 1.2 171 15.9 3.6
fl6(CTO)12E1 C245 (2...20 cm) Steel I / Wide Flange Yellow 11 1 257 22.4 4
fl6(CTO)12E2 C245 (2...20 cm) Steel I / Wide Flange Gray&Dark 13.2 1.7 318 27.7 4.7
fl6(CTO)14E1 C245 (2...20 cm) Steel I / Wide Flange Blue 13.4 1.4 435 36.4 4.7
fl6(CTO)14E2 C245 (2...20 cm) Steel I / Wide Flange Blue 16.4 2.4 541 44.9 5.8
fl6(CTO)16E1 C245 (2...20 cm) Steel I / Wide Flange Green 16.2 2 689 54.4 5.7
fl6(CTO)16E2 C245 (2...20 cm) Steel I / Wide Flange Cyan 20.1 3.6 869 69.3 7.1
fl6(CTO)18E1 C245 (2...20 cm) Steel I / Wide Flange Red 19.6 2.7 1063 81.9 6.9
fl6(CTO)18E2 C245 (2...20 cm) Steel I / Wide Flange Magenta 24 4.8 1317 100.8 8.5
fl6(CTO)20E1 C245 (2...20 cm) Steel I / Wide Flange Yellow 27.2 5.9 1844 133.9 9.9
fl6(CTO)25E1 C245 (2...20 cm) Steel I / Wide Flange Gray&Dark 32.7 6.7 3537 254.8 11.4
fl6(CTO)25E2 C245 (2...20 cm) Steel I / Wide Flange Blue 37.7 9.8 4052 293.8 13.6
fl6(CTO)30E1 C245 (2...20 cm) Steel I / Wide Flange Green 41 6.7 6362.6 442.2 16.3
fl6(CTO)30E2 C245 (2...20 cm) Steel I / Wide Flange Cyan 46.8 12.7 7210 507.4 17.7
fl6(CTO)35E1 C245 (2...20 cm) Steel I / Wide Flange Red 52.7 13.7 11095 791.4 19.1
fl6(CTO)35E2 C245 (2...20 cm) Steel I / Wide Flange Magenta 63.1 23 13560 984.2 22.2
fl6(CTO)40E1 C245 (2...20 cm) Steel I / Wide Flange Yellow 72.2 27.1 20020 1446.9 25.4
Name
I section Дб(СТО)40Б2 Дб(СТО)45Б1 Дб(СТО)45Б2 Дб(СТО)50Б1 Дб(СТО)50Б2 Дб(СТО)50Б3 Дб(СТО)55Б1 Дб(СТО)55Б2 Дб(СТО)60Б1 Дб(СТО)60Б2 Дб(СТО)70Б0 Дб(СТО)70Б1 Дб(СТО)70Б2 Дб100Б1 Дб10Б2
Material
C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm) C245 (2...20 cm)
Stee Stee Stee Stee Stee Stee Stee Stee Stee Stee Stee Stee Stee Stee Stee
Shape
Auto Select II/ Wide Flange II/ Wide Flange II/ Wide Flange II/ Wide Flange II/ Wide Flange II/ Wide Flange II / Wide Flange II / Wide Flange II / Wide Flange II / Wide Flange II / Wide Flange II / Wide Flange II / Wide Flange II / Wide Flange II / Wide Flange
Color Area cm2 J cm4 133 cm4 122 cm4 As2 cm2
Gray&Dark Blue Green Cyan Red Magenta Yellow Yellow Gray&Dark Blue Green Cyan Red Blue Green
84.1
84.3 96.8
92.4
101.3 114.2
113.4 124.8
120.5 134.4 153.1
164.7
183.6
293.8
328.9
42.1
43.7 57.1 46.5 60.9
85.8 73.4 95.8 83.3 113.6 115.8 136.1 188
418.5 589.1
23706 28699 33453 36845 41872 47849 55682 62790 68721 77638 115187 125931 145913 446000 516400
1736.2 1579.7
1871.3 1581.5
1844.4 2140.3
2404.5
2760.3 1979
2277.5 3097.7
4556.4 5436.7 11520 13710
29
35.4
36.5
39.2 40.4
44.8
47.3
49.9 53.3
58.6 71 73.9 77.6 139
148.7
и z
H Û -I H
D
CÛ
The section on materials and frames is the most suitable for the job at hand. The option is frequently made to utilize fl6(CTO)181, with 245 (2...20 mm) material, form steel I/wide flange, and a medium red colour when entrusted with building a sturdy steel frame.
With a surface area of 19.6 cm2, this fl6(CTO)181 material is frequently used in the building of reinforced steel frames because of its exceptional strength and dependability. The form steel I structure is frequently used because it can withstand a broad range of loads and reduces the possibility of fracture under tension. Its red hue makes it perfect for a variety of tasks since it stands out amid the other frame components.
In the scenario given, a material with a 4000Psi strength, element type Membrane and Shell-Thin, is used in four distinct sections: the deck, plank1, slab, and wal1, each of which has a thickness of 150, 200, 160, and 250 mm.
Table 4
Area Section Property Definitions
Name Type Element Type Material Total Thickness mm
Deck Deck Membrane 4000Psi 150
Plank 1 Slab Membrane 4000Psi 200
Slab Slab Shell-Thin 4000Psi 160
Wall 1 Wall Shell-Thin 4000Psi 250
< .
I- ri
ш CT
s «
_J S
4 <u z '
и
-J ^
< с
, <U ш с
s!
ш и
и <и
> S
■ L
I- ^
<г ш
5 <и
> -и
о и
SS ч-
Я О z С
ri 0
О <л
о ГС
ш £
■ о
и и
Shell-Thin components are useful here. Shell-Thin elements optimise material strength by lowering material thickness in areas that need strength but don't need heavy-duty material. This allows a stronger, compact design. Decks are the thinnest at 150 mm. This must support structures or items on top. As the heaviest of the four components, it should be reinforced.
Plank1 and slab will be thicker than the deck section at 200 and 160 mm. The slightly greater thickness prevents warping or buckling from the weight of structures or goods on top. Thicker anchoring increases platform stability. Auto seismic loading helps design safe and useful steel structures. This programme lets engineers quickly evaluate the structure's stiffness and seismicity.
ASCE 7-16 Auto Seismic Load Calculation
This calculation presents tl-ie automatically generated lateral seismic loads for load pattern EQX according to ASCE 7-16, as calculated by ETABS.
Direction and Eccentricity Direction ■ X Structural Period
Period Calculation Method = Program Calculated Coefficient, C,[ASCE Table 12 S-2) Coefficient, x [ASCE Table 12.8-2] Structure Height Above Base, hn Long-Period Transition Period, tl[ASCE
11.4.5)
Factors and Cc
C,= 0.02S ft x = 0.8 ft„= 59 06 ft
TL = 8 sec
' f K. H; r it
Response Modification Factor. R [ASCE Tabie 12.2-11
System Overstrength Factor, 00[ASCE Tabte 12.2-1]
Deflection Amplification Factor, Cd (ASCE Table 12.2-1]
Importance Factor, I (ASCE Table 1.5-2]
Ss and St Source = 0.8
Mapped MCE Spectral Response Acceleration, S ^ J ASCE 11.4.2]
Mapped MCE Spectral Response Acceleration, s , [ASCE 11.4.2]
Site Cäass JASCE Table 2D.3-1] = B - Rock
Site Coefficient. F„[ASCE Table 11.4-1] Site Coefficient, FJASCE Table 11.4-2]
ft = 5 iX = 3
Cd=4.S 1=1
S, = 0.61g S, - 0.22g
F. •
F.=
0,9 OS
Seismic Response
MCE Spectral Response Acceleration, S „s [ASCE 11.4.4, Eq. 11.4-1]
MCE Spectral Response Acceleration, SM, [ASCE 11.4.4, Eq. 11.4-2)
Design Spectral Response Acceleration, SÛS[ASCE 11.4.5, Eq. 11.4-31
Design Spectral Response Acceleration, SD1 [ASCE 11.4.5, Eq. 11.4-4]
Sus ~ F» $4
Swr = F, S,
S =i-S
S =i-S
Sus = 0.549g Su, -0.176g Soi= 0.366g Sot =0.117333g
Fig. 5. Lateral load to stories Vs force
The design guidelines specify that the maximum value for an ELF system for a steel structure should not be greater than that value. For instance, the Max value for a steel building intended for locations with medium seismic risk should not be greater than 0.016104. The seismic reaction coefficient Max value should be higher than 0.016104 and the gravity factor g should be equal to or higher than 0.6g in order to correctly design a steel structure for uneven lateral stresses.
Result and discussion
The greatest joint displacement values recorded for each direction (X, Y, and Z axes) in various stories are listed in the following table. The findings demonstrate that for each story under consideration, the joint
z
M Û -I M
D
CÛ
< .
I- ri
111 CT
s «
_J S
^ <u z '
< c
, (U iu c
si
iu <u U (U
* S
■ L
I- ^
<f ®
5 <u >
O w
SS K-
E O
z C
ri ° O m
O |o
w E
■ o
u u
displacements permitted by the AISC design code are typically more than those mandated by SP16. In comparison to SP16., the AISC design code allowed greater displacements along the X-axis for all stories. The joint displacements permitted by the AISC design code also go beyond the limits set by Eurocode 3 in the Y-axis and Z-axis directions.
Table 5
Story Response Values
SP AISC % Divergence
Story X-Dir Y-Du- Z-Dir X-Dir Y-Du- Z-Dir X Y Z
mm mm mm mm mm mm
Story6 20.392 51.63 0.197 11.438 5.507 0.06 43.90938 89.33372 69.54315
Story5 18.034 45.174 0.191 9.522 4.654 0.057 47.19973 89.69761 70.15707
Story4 14.495 36.54 0.617 7.442 3.649 0.052 48.65816 90.01368 68.86228
Story3 10.512 26.636 0.141 5.239 2.597 0.043 50.16172 90.25004 69.50355
Story2 6.253 15.872 0.104 3.069 1.545 0.031 50.91956 90.26588 70.19231
Story1 2.369 5.925 0.057 1.104 0.614 0.017 53.39806 89.63713 70.17544
Base 0 0 0 0 0 0 0 0 0
We have compared AISC and SP16 story displacement of 6-story steel constructions. Steel structure design relies on story displacement, which affects vibration response. The measured floor deflection creates a vertical gap between the roof and floor at the juncture. To maintain building comfort and stability, story displacement is minimized.
The two criteria for story displacement of a six-story steel building compare lateral, torsional, braced, and rocking stiffness. Let's start with lateral rigidity, which stabilizes front-to-back movement. AISC recommends 800 kN/m for a 6-story structure's total lateral stiffness. However, SP16 requires lateral stiffness of 650 kN/m for a 6-story structure. AISC recommended torsional stiffness not exceed 400 kN/m of load. For steel structural safety, SP16 caps torsional stiffness at 200 kN/m of mechanism load.
Fig. 6. Comparison of Story displacement for AISC and SP 16 in X-axis
Fig. 7. Comparison of Story displacement for AISC and SP 16 in Y-axis
Considering braced flexibility and rocking rigidity. Braced flexibility measure's structure stability under wind stresses. AISC recommends a maximum braced flexibility of 150 kN/m for the 6-story building. The AISC limits rocking stiffness to 150 kN/m, but SP16 recommends 30 kN/m.
Fig. 8. Comparison of Story displacement for AISC and SP 16 in Z-axis
Fig. 9. Story displacement for AISC
Fig. 10. Story displacement for SP
z
M Û -I M
D CD
< .
I- ri
111 Q
s «
_J S
^ <u z '
-J ^
< c
, (U IU c
Si
UJ (U
U (U
* I
. L
I- ^
<f ® 5 <u
> -M
o w s o
z C
ri ° O m
O «
w E ■ o
u u
Russian SP16 specifies 1.5 cm story displacement for a 6-story structure, while AISC recommends 2 cm. Measure these values between the floor and roof. Russian SP16 is tougher than AISC in terms of maximum stiffness, braced flexibility, rocking stiffness, and story displacement for a 6-story structure. Double- and triple-story buildings have tougher SP16 values.
Steel structures must consider story drifts. To maintain structural safety, several regulations require checking story drift requirements. Structural engineers must understand the differences between AISC and Russian SP16 steel structure drifts, since any variations may create instability.
Max Story Drifts Golbal X
10
Base Storyl Story2 Story3 Story4 5tory5 Story6 —•—Drift AISC —•—Drift SP
Fig. 11. Comparison of Story drift X-axis
The ratio of relative storey drift to storey height, e, should not exceed 0.020, according to the AISC rule. Steel frames must have story drift at least 0.010 times the story height, h. Restoration is needed when e is between 0.010 and 0.020.
Table 6
Comparison of Story Drifts for AISC and SP16
Story SP AISC % Divergence
X-Dir Y-Dir X-Dir Y-Dir X Y
Story6 0.000103 0.000059 0.000118 0.000867 -14.5631 -1369.49
Story5 0.000074 0.000045 0.000027 0.0009 63.51351 -1900
Story4 0.00006 0.000039 0.000026 0.000841 56.66667 -2056.41
Story3 0.000051 0.000033 0.000023 0.000799 54.90196 -2321.21
Story2 0.000046 0.000028 0.000022 0.000689 52.17391 -2360.71
Story1 0.000023 0.000017 0.000008 0.00039 65.21739 -2194.12
Base 0 0 0 0 0 0
According to the Russian SP16 code, building classification by size and occupancy determines relative story drift values. The code requires group A buildings to have e between 0.010 and 0.017. Group B buildings should be between 0.0065 and 0.015. In group C and D buildings, relative story drift values should not exceed 0.008 and 0.004, respectively.
Fig. 12. Comparison of Story drift Y-axis
Fig. 13. Comparison of Story Drifts for AISC and SP16 (X-Dir)
Comparison of Story Drifts for AISC and SP16 (Y-dir)
0,001 0,0008 0,0006 0,0004 0,0002
Mill.
и Story6 Story5 Story 4 Story3 Story2 Story 1
■ AISC Y-Dir 0,000059 0,000045 0,000039 0,000033 0,000028 0,000017
■ SP 16 Y-Dir 0,000867 0,0009 0,000841 0,000799 0,000689 0,00039
I AISC Y-Dir ■ SP 16 Y-Dir
z
M Û -I M
Э CÛ
Fig. 14. Comparison of Story Drifts for AISC and SP16 (Y-Dir)
The Russian SP16 code and AISC code for a 6-story steel structure differ in story drift criteria. The Russian SP16 code limits story drift to 0.010 in group D buildings and 0.017 in group A buildings, while the AISC code allows up to 0.020. Thus, the Russian SP16 code may tolerate lower story drift values for a 6-story steel structure than the AISC code.
Fig. 15. Max story drifts for AISC
Fig. 16. Max story drifts for SP16
< .
À Ш Q С
S « * =
< C
.г
* H
<ï
s U
ш с
s!
ш и
о (О
* g
. L i- ^
<с «
5 « о и
sy ч-
й о
Z с ¿ 0
О «л * "Z о «
ш £ ■ о
ü и
Steel structure stability depends on story drift. Understanding a structural code's tale drift criterion helps maintain structure safety. The Russian SP16 code and the AISC code have distinct story drift limits for 6-story structures. Structural engineers must understand code variances to assure structure safety.
Here we have compared structure with both American AISC and Russian SP16 code. From the stressstrain analysis conducted here, the following results are obtained:
Fig. 17. RS Deformation using AISC code
We received results that according to the modal numbers and time decreasing for SumUX, SumUY, SumUZ values arent increasing constantly while varing results compared to the AISC table from table Modal participating mass ratio.
Table 7
Modal Load Participation Ratios for SP16
Case Item Type Item Static % Dynamic %
Modal Acceleration UX 99.96 96.06
Modal Acceleration UY 100 99.31
Modal Acceleration UZ 66.76 49.51
The results emphasize how critical it is to comprehend the mechanical characteristics of diverse surface types in applications like engineering and design to make sure they can endure the necessary forces and stresses.
MODAL LOAD PARTICIPATION RATIOS (STATIC)
■ SP ■ AISC
99,96 | j 97,57 j -flÔÔ] \gs>4sj ■ ■
0 UX UY UZ
■ SP 99,96 100 66,76
■ AISC 97,57 95,48 25,23
Fig. 18. Modal load participation Ratios between SP16 & AISC (Static)
O
z
M û -I M
D
CÛ
MODAL LOAD PARTICIPATION RATIOS (DYNAMIC)
SP ■ AISC
96,06
99,31
73,34
75,93
49,51
10,74
■ SP 96,06 99,31 49,51
[■AISC 73,34 75,93 10,74
Fig. 19. Modal load participation Ratios between SP16 & AISC (Dynamic)
Modal loads we have found acceleration for UX static load 99.96%, dynamic load 96.06%, for UY static load 100.00%, dynamic load 99.31%, for UZ static load 66.76%, dynamic load 49.51%. Which is showing higher percentage of loads compared to that of pervious AISC loads.
To precisely estimate and manage the bending moment of an existing or new steel structure, professional engineers typically employ standards like the American Institute of Steel Construction (AISC) and the Russian SP 16 code.
< .
I- ri
111 CT
S « ¡ =
_j S
^ <u
z '
tfl
-J ^
< c
, <U iu c
Si
iu <u O (U
* S
■ L
I- ^
<f ® 5 <u
> -M
o w
K-
í o
Z C ¿ 0
O m
* Z O ¡O
w SE
■ o O u
AISC
SP16
Fig. 20. Comparison of bending moments of structure using AISC and SP16
The American Iron and Steel Institute produced the AISC code, which lays out the fundamental requirements for designing steel structures like buildings. This includes calculating the bending moments for beams, columns, and other structural components to see if the building satisfies the safety and performance standards. The AISC code also contains requirements that outline the connections between structural components that must be made in order to give the required strength and stability.
Shear force affects steel structural stability and load resistance. When creating a building, forces and connections must be considered. This article compares AISC and SP16 shear force requirements for 6-story steel structures.
When a structure is loaded vertically, resistant parts generate shear force, also known as shear strength. The structure may be loaded by wind, earthquakes, or other forces. Shear stresses create bending moments, which can buckle, vibrate, or even unstable steel parts.
Fig. 21. Comparison of Shear force of structure using AISC and SP16
Considering shear force on joints and connections when building a 6-story steel structure. The AISC classifies structures by height and complexity. Category 3 shear connections are the most complex and have the highest load requirement.
Conclusion
The AISC code and the Russian SP16 results demonstrate the disparities in steel structure. For the continuous beam, it is discovered that the absolute percentage of divergence for moments, deflection, and shear forces is around 0.043%, 0.059, and 0.048%, respectively. The least inaccuracy discovered when the outcomes of the AISC code and the Russian SP16 are compared is 0.001% for some case studies and 0.008% for others. The findings demonstrate that there are considerable differences between the values obtained using the AISC code and the Russian SP16 code. The AISC coding method, however, takes less processing time. Conversely, SP16 has lower deflexional proportions. The AISC code and the Russian SP16 thereby surpass numerical or analytical approaches for complicated engineering issues.
< .
I- ri
UJ w
S «
_j S
^ <u
z '
tfl
-J ^
< c
, (U UJ c
si
iu <u U <U
* S
■ L
I- ^
«T ®
5 <u
> -M
O w
sy Ks o
Z C ^ °
O m O |o
w £
■ o
u u
References
1. AISC, ANSI/AISC 360-16: Specifications for Structural Steel Buildings, American Institute of Steel Construction, Chicago,IL, USA, 2016.
2. E. S. Kameski, "Comparison of BS 5950 and AISC-LRFD codes of practice," Practice Periodical on Structural Design and Construction, vol. 3, no. 3, pp. 105 - 117, 2006.
3. V. V. Galishnikova and T. H. Gebre, "A comparative study of beam design curves against lateral torsional buckling using AISC, EC and SP," Structural Mechanics of Engineering Constructions and Buildings, vol. 15, no. 1, pp. 25 - 32, 2019.
4. B. Bjorhovde, Deterministic and probabilistic approaches to the strength of steel columns, evolution and state-of-the-art of column stability criteria, Ph.D. dissertation, Lehigh University, Bethlehem, PA, USA,
5. Y Fukumoto and Y. Itoh, "Evaluation of multiple column curves using the experimental data-base approach," Journal of Constructional Steel Research, vol. 3, no. 3, pp. 2 - 19, 1983.
6. Book "Code of practice for the structural use of steel 2005" by Building Department.
7. D. J. Yong, A. Lopez, and M. A. Serna, "Beam-column resistance of steel members: a comparative study of AISC LRFD and EC3 approaches," International Journal of Structural Stability and Dynamics, vol. 11, no. 2, pp. 345 - 361, 2011.
8. T. V. Galambos, "A comparison of Canadian, Mexican and United States steel design standards," Engineering Journal, vol. 36, pp. 52 - 66, 1999.
9. Gebre T. H., 2019. The development of chart based method for steel beam designs using the Russian sections Structural Mechanics of Engineering Constructions and Buildings, 14 (1), pp. 495 - 501.
10. Gebre T. H. and Negash N. A., 2018. The development of strength curve for compressive members using three different codes: AISC, Euro Code 3 and Russian steel construction Proc. Engineering Systems, 2018 (Moscow, Russia), pp. 59 - 67.
11. Ivan B. and Jindrich M., 2017. Lateral-torsional buckling of beams of mono-symmetrical cross sections loaded perpendicularly to the axis of symmetry Theor. Anal. Euro St. 2-3, pp. 1086 - 1095.
12. American Society of Civil Engineers Advanced Analysis in Steel Frame: Design Guidelines for Direct Second-Order Inelastic Analysis. 2013.
13. Chen W. F., Sohal I. S. Plastic Design and Second-Order Analysis of Steel Frames. 2013. https://doi. org/10.1007/978- 1-4613-8428-1
14. Chen W. F. Toward practical advanced analysis for steel frame design. Structural Engineering International. 2009; 19 (3): 234 - 239.
15. Surovek A. E., White D. W. Alternative Approaches for Elastic Analysis and Design of Steel Frames. I: Over-view. J. Struct. Eng. 2004; 130 (8): 1186 - 1196.
16. Galishnikova V. V, Gebre T. H., Al-Sabri S. A. M, Saffia Doe O. Second Order Structural Theory for the Stability Analysis of Columns. Structural Mechanics of Engineering Constructions and Buildings 2018; 14 (3): 192 - 197. http://dx.doi.org/10.22363/1815-5235-2018-14-3-192-197.
17. Trahair N. S. Trends in the code design of steel framed structures. Adv. Steel Constr. 2018; 14 (1): 37 - 56.
18. J. Constr. Steel Res. 2015; 114: 157 - 177. https://doi.org/10.1016/ j.jcsr.2015.07.012.
19. White D. W., Hajjar J. F. Application of Second-Order Elastic Analysis in LRFD : Research to Practice. Engineering Journal, American Institute of Steel Construction. 1991; 28: 133 - 148.
20. Chen W. F. Advanced Analysis of Steel Frames: Theory, Software, and Applications. CRC Press; 2018.
21. Geschwindner L. F. A Practical Look at Frame Analysis, Stability and Leaning. Columns Engineering Journal. 2002; 39 (4): 167 - 181.
22. Torkamani M. A. M., Sonmez M. S., Cao J. Second-Order Elastic Plane-Frame Analysis Using Finite-Element Method. Journal of Structural Engineering. 1997; 123 (9): 1225 - 1235. DOI: 10.1061/(ASCE)0733-9445(1997)123:9(1225).
23. Maleck A. E. Second-Order Inelastic and Modified Elastic Analysis and Design Evaluation of Planar
Steel Frames. 2001. U
24. Surovek A., White D. W. Direct Analysis Approach for the Assessment of Frame Stability: Verification Studies. Structural Stability Research Council Annual Stability Conference. 2001.
25. White D. W., Surovek A. E. et al. Stability Analysis and Design of Steel Building Frames Using the 2005 AISC Specification. Steel Structures. 2006; 6: 71 - 91.
26. Rebekka W., Rolf K., Markus K. (2017). Lateral Torsional Buckling Behavior of Steel Beams—On the Influence of the Structural System. Structures, (11), 178 - 188. doi: 10.1016/j.istruc.2017.05.007
27. Jan B., Miroslav B., Martin V., Jindrich M., Marcela K., Jin P. (2017). Experimental Analysis of Lateral Torsional Buckling of Beams with Selected Cross-Section Types. Procedia Engineering, (195), 56 - 61.
28. Galishnikova V. V., Pahl P. J. (2018). Analysis of frame buckling without sidesway classification. Structural mechanics of engineering constructions and buildings, 14 (4), 299 - 312.
О
CD
< .
- I- Д
ш ст
г -
СРАВНЕНИЕ ПРОЕКТИРОВАНИЯ ЭЛЕМЕНТОВ м «
СТАЛЬНОГО КАРКАСА ПО СП16.1330.2017 И МБС < ¡=
<т й
Г. Э. Окольникова * 7 ** г и
Т. Х. Гебре* < с
А. Н. Ал Амин* ЩР
к щ
Р. Д. Гамзатов * ¡я
Б. Эрдоган* О <и
■ е
А. А. Филиппова * I го
■ 1-I- ^
* Российский Университет Дружбы Народов (РУДН), г. Москва щ
** Национальный исследовательский Московский государственный строительный университет Р ^
Я О
г с ^ °
О <л
О ГС
ш £ ■ о
и и
(НИУ МГСУ), г. Москва
Аннотация
Ключевые слова
свойства материала, конструкция стержня, проверка на устойчивость, расчетный силовой метод соединения, рамная конструкция, неразрезная балка, сталь
В этой статье представлено всестороннее сравнение рекомендаций по проектированию стальных элементов конструкций, установленных Американским институтом стальных конструкций и российскими стандартами. Целью оценки этих кодов проектирования является выявление сходств, различий и возможных последствий для поведения конструкции и производительности систем стальных ферм. Анализ охватывает важные аспекты, такие как, сочетания нагрузок, свойства материалов, конструкция стержня, проверка устойчивости и конструкция соединения. В исследовании критически рассматриваются два подхода в проектировании стальных каркасов, подчеркиваются их сильные и слабые стороны, чтобы предоставить ценную информацию инженерам-строи-
Дата поступления в редакцию
Дата принятия к печати
12.06.2023
17.06.2023
телям и проектировщикам при выборе соответствующего кода проектирования для элементов стальной фермы с учетом таких факторов, как местоположение проекта, нормативные требования и цели проектирования.
Ссылка для цитирования:
G. E. Okolnikova, T. H. Gebre, A. N. Al Amin, R. D. Gamzatov, B. Erdogan, A. A. Filippova. Comparison of steel frame elements design using SP16.1330.2017 and AISC. — Системные технологии. — 2023. — № 3 (48). — С. 87 - 106.