Научная статья на тему 'Численное моделирование задачи позиционирования инструмента хирургического Робота-Манипулятора при движении по заданной траектории'

Численное моделирование задачи позиционирования инструмента хирургического Робота-Манипулятора при движении по заданной траектории Текст научной статьи по специальности «Механика и машиностроение»

CC BY
1564
281
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПОЗИЦИОНИРОВАНИЕ ИНСТРУМЕНТА / ХИРУРГИЧЕСКИЙ РОБОТ-МАНИПУЛЯТОР / ДВИЖЕНИЕ ПО ТРАЕКТОРИИ / МЕТОД ВЫЧИСЛЕНИЯ УПРАВЛЯЮЩИХ МОМЕНТОВ / MATLAB® ROBOTICS TOOLBOX / SIMULINK® / БИОПСИЯ МОЗГА

Аннотация научной статьи по механике и машиностроению, автор научной работы — Богданова Ю. В., Гуськов А. М.

Рассматривается проблема позиционирования инструмента семистепенного хирургического Робота-Манипулятора на примере биопсии головного мозга. Подчеркивается, что данная операция требует исключительной точности подведе­ния инструмента к точке цели. Движение инструмента осуществляется от точки к точке вдоль заданной в абсолютной декартовой системе координат траектории. Координаты же­лаемой траектории преобразуются в соответствующие присоединенные координаты со­членений решением обратной задачи кинематики. В качестве схемы управления выбран метод вычисления управляющий моментов. Полученные положения, скорости и ускоре­ния сочленений подаются на вход решения обратной задачи динамики, вычисляющей мо­менты в сочленениях, необходимые для реализации заданного движения, с учетом закона управления. Текущее положение, скорость и ускорение сочленений получаются решением прямой задачи динамики. Высокие показатели точности позиционирования инструмента доказывают адекватность имеющейся модели Робота-Манипулятора и пригодность вы­бранной схемы управления. Задача численного моделирования решена в программном па­кете MATLAB® Robotics Toolbox + Simulink®.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Богданова Ю. В., Гуськов А. М.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Численное моделирование задачи позиционирования инструмента хирургического Робота-Манипулятора при движении по заданной траектории»

НАУЧНОЕ ИЗДАНИЕ МЕТУ ИМ. Н. Э. БАУМАНА

НАУКА и ОБРАЗОВАНИЕ

Эл № ФС77 - 48211. Государственная регистрация №0421200025. КБМ 1994-0408

электронный научно-технический журнал

Численное моделирование задачи позиционирования

инструмента хирургического Робота-Манипулятора при

движении по заданной траектории

# 06, июнь 2013

Б01: 10.7463/0613.0574314

Богданова Ю. В., Гуськов А. М.

УДК 531, 53.072, 62-5, 617-089, 617-7

Россия, МГТУ им. Н.Э. Баумана [email protected] gouskov [email protected]

Введение

История роботизированной хирургии насчитывает уже более двадцати пяти лет. С каждым годом роботизированная медицина получает все большее распространение. Однако робототехнические комплексы - дорогостоящая продукция. Поэтому, чем больший спектр хирургических операций может выполнить роботизированная система, тем выгоднее ее приобретение.

С целью создания отечественного хирургического комплекса, не уступающего по характеристикам зарубежным аналогам, в рамках федеральной целевой научно-технической программы разрабатывается многофункциональный манипулятор для роботоасси-стенции в высокоточной хирургии (далее Робот-Манипулятор). Ожидается, что стоимостные показатели разрабатываемого Робота-Манипулятора будут ниже, чем у получивших широкое распространение современных роботизированных комплексов, что сделает возможным его приобретение специализированными и широкопрофильными медицинскими учреждениями [1].

Робот-Манипулятор предназначен для общей хирургии, к которой не относят процедуры, требующие исключительной точности позиционирования инструмента, как, например, задачи нейрохирургии. Применение Робота-Манипулятора для проведения той или иной операции определяется его возможностью точного наведения хирургического

инструмента. В попытке расширить предполагаемый спектр выполняемых Роботом-Манипулятором задач, работа посвящена изучению проблемы точности позиционирования хирургического инструмента. Нейрохирургической операцией, требующей высокой точности попадания инструмента в точку цели является биопсия головного мозга. Биопсия - это обязательный метод подтверждения диагноза при подозрении на наличие онкологических заболеваний, при котором проводится прижизненный забор клеток или тканей из организма [2]. Для робота-ассистента процесс подведения инструмента к месту дальнейших манипуляций одинаков, независимо от вида процедуры. Поэтому исследование проблемы позиционирования инструмента реализуем на примере биопсии мозга. Изучение биопсии мозга проведено в условиях реальной операции, проведенной в НИИ нейрохирургии имени Н.Н. Бурденко РАМН, и представлено в работе [3].

Задача позиционирования в общем смысле - одна из основных задач робототехники. Высокая точность позиционирования - требование, предъявляемое ко всем роботизированным системам хирургического вмешательства, поскольку речь идет о безопасном проведении процедуры для пациента. Обзор литературы показывает, что моделирование движения инструмента по заданной траектории методом вычисления управляющих моментов дает хорошие результаты [4-8]. Согласно работам [5, 6, 9] задачу управления удобно решать в среде MATLAB® Simulink. Исследование [10] отдельно посвящено подбору коэффициентов усиления системы управления. Влияние коэффициентов на поведение системы показано, в том числе, в работе [11]. В работе [9]

®

проведено моделирование движения инструмента по заданной траектории в MATLAB Simulink, однако, без учета управления. Выбор оптимальной траектории движения манипулятора с избыточным числом степеней подвижности представлен в работе [12]. В исследовании [13] предложена методика расчета, позволяющая прокладывать траекторию движения Робота-Манипулятора с учетом минимизации возможных паразитных отклонений инструмента. Разработка схемы управления роботом-манипулятором PUMA 260 приведена в работе [14]. Настоящая работа представляет собой изучение возможности разрабатываемого Робота-Манипулятора позиционировать инструмент при отработке траектории от точки к точке с точностью не менее 0,05 мм. Такую точность хирургического вмешательства в настоящий момент способна обеспечить нейрохирургическая система последнего поколения - робот-ассистент ROSA (Medtech, France) [15].

В первой части представлены исходные данные и допущения, принятые для решения поставленной задачи. Вторая часть включает в себя теорию и моделирование

этапов исследования разрабатываемого Робота-Манипулятора. Подразделы описывают: кинематику Робота-Манипулятора, планирование траектории и симуляцию движения по траектории, расчет конфигураций манипулятора для реализации движения вдоль траектории от точки к точке, скорость движения инструмента, оценку показателя манипулятивности и анализ сингулярностей Робота-Манипулятора, динамику и реализацию задачи управления. Третья часть посвящена обсуждению результатов исследования и общим выводам по работе.

Цель исследования. Реализовать численное моделирование задачи позиционирования инструмента семистепенного хирургического Робота-Манипулятора в каждой заданной точке требуемой траектории движения. Погрешность позиционирования инструмента не должна превыщать 0,05 мм.

1 Расчетная схема

Исполнительная кинематическая цепь Робота-Манипулятора представляет собой семь последовательно соединенных между собой с помощью вращательных кинематических пар подвижных звеньев, первое из которых соединено с неподвижным звеном [1]. Для описания связей между соседними звеньями Робота-Манипулятора используется представление Денавита-Хартенберга. Каждое звено характеризуется четырьмя параметрами: постоянными , а], а] и переменной обобщенной координатой

Ч] [4]. Каждое сочленение имеет в своем составе сервопривод, подобранный исходя из

требуемого расчетного момента [1]. Характеристиками привода являются передаточное число, масса и моменты инерции. Трение в двигателях и сочленениях не учитывается.

Хирургическим инструментом Робота-Манипулятора, согласно проведенной в НИИ нейрохирургии имени Н.Н. Бурденко РАМН операции, является биопсийная игла длиной 200 мм и весом 100 г.

Рабочей средой инструмента является головной мозг. Инструмент воспринимает нагрузки от взаимодействия с тканью. Мозг состоит преимущественно из клеток, называемых серым веществом, и из нервных волокон - белым веществом, так что нагрузки на инструмент незначительны. Поэтому задача позиционирования решается без учета внешних нагрузок на инструмент.

2 Теория и моделирование

2.1 Кинематика Робота-Манипулятора

Используя возможности MATLAB® Robotics Toolbox, создаем Робот-Манипулятор, задав последовательность элементарных поворотов и перемещений [4]. Полученный манипулятор ManRo с инструментом длиной ltool = 0,2 м в начальном положении изображен на рисунке 1а в виде набора из семи шарниров, соединенных жесткими звеньями. Последнее звено - инструмент изображается связанной с ним системой координат с осью z, направленной вдоль инструмента. На рисунке 1б представлена произвольная конфигурация Робота-Манипулятора.

а) б)

Рисунок 1 - Схема Робота-Манипулятора с инструментом в MATLAB® Robotics Toolbox: а) начальная конфигурация; б) произвольная конфигурация

Известны два типа задач кинематики: прямая и обратная [1].

Прямая задача кинематики: для конкретного манипулятора по известному вектору присоединенных углов - обобщенных координат q = (д1, д2, д3, д4, д5, д6, д7)т , - определить положение и ориентацию инструмента манипулятора относительно абсолютной системы координат 8 = (х7, у7, г7, ф7,07, ф7)т = /(д). Параметры х7, у7, z7 имеют смысл координат

начала системы координат в абсолютной системе отсчета Х0У020, а параметры ф7,07, ф7 -углы, задающие ориентацию системы координат х7, у7, г7 относительно Х0У020.

Обратная задача кинематики: по заданному положению и ориентации инструмента манипулятора 8 = 8* или Т = Т* найти вектор обобщенных координат

Ч = (^1>42’Яз>Ял*Яб’Яв’Я7) , где Т - матрица однородных преобразований.

Для моделирования движения по заданной траектории необходимо решать обе задачи.

2.2 Траектория Робота-Манипулятора

При выполнении биопсии мозга местоположение точки цели, располагающейся в глубине мозга, определяется по КТ/МРТ (компьютерная томография/магнитнорезонансная томография) снимкам с помощью специальной компьютерной программы либо стереотаксической системы, либо роботизированной системы, которая рассчитывает координаты искомой точки. После этого хирург планирует траекторию движения Робота-Манипулятора. Учитывая функциональные зоны мозга, которые не должны подвергаться хирургическому воздействию, хирург прокладывает максимально безопасную траекторию движения инструмента к заданной точке [13].

Производить расчет траектории позволяет нейронавигационная система [13]. Траектория в пространстве представляет собой набор точек с известными декартовыми координатами. В программном пакете формируем прямолинейную траекторию движения иглы, задав координаты точек (используется синтаксис программной среды МЛТЬЛВ):

X = 0.18:0.005:0.23;

У = 0.30:0.005:0.35;

Ъ = 0.50:0.005:0.55;

Для сокращения времени расчетов выбран умеренный шаг дискретизации траектории на узловые точки. Полученная траектория в пространстве и в проекциях на плоскости приведена на рисунке 2. Черной звездочкой обозначена начальная точка, а красной -конечная точка траектории.

Desired Trajectory: YZ Desired Trajectory: XY

Рисунок 2 - Требуемая траектория в пространстве (сверху-слева), и в проекциях на

координатные плоскости

Для Робота-Манипулятора отработка траектории состоит в переходе из одной конфигурации в другую. Определив траекторию в абсолютном пространстве необходимо осуществить преобразование декартовых координат узловых точек в соответствующие присоединенные координаты Робота-Манипулятора. Для этого в каждой узловой точке формируем матрицу однородных преобразований, несущую информацию, как о положении, так и об ориентации инструмента.

Ориентация инструмента не должна быть произвольной. Для обеспечения безопасного прохождения траектории инструмент должен двигаться точно по прямой, соединяющей точки траектории. При проведении биопсии мозга траектории движения могут быть только прямолинейными. Если говорить о произвольных криволинейных траекториях, инструмент должен подходить по касательной к каждой точке. Учитывая

высокую дискретизацию навигационной системы, прямую, соединяющую две точки, считаем касательной ко второй точке. На рисунке 3 изображено движение инструмента (красная прямая) по касательной к узловым точкам произвольной криволинейной траектории (синяя кривая).

Рисунок 3 - Симуляция движения инструмента (красная прямая) по траектории (синяя

кривая) в разные моменты времени

Формируя матрицу однородных преобразований, учитываем требуемую ориентацию инструмента. Присоединенные координаты сочленений Робота-Манипулятора q = (д2,д3,д4,д5,д6,д7)т получим, решив обратную задачу кинематики

[4]. Зная траекторию движения инструмента в присоединенных координатах сочленений, движение инструмента реализуем задавая конфигурацию Робота-Манипулятора в г -ой точке, конфигурацию в г +1 -ой точке и желаемое количество шагов по времени [4]. На рисунке 4 изображен Робот-Манипулятор в некоторый момент времени отрабатывания траектории.

Рисунок 4 - Движение Робота-Манипулятора по заданной траектории

Изменение присоединенных координат сочленений и декартовых координат конца инструмента во времени приведено на рисунке 5.

Рисунок 5 - Присоединенные координаты сочленений во времени (слева), декартовые координаты во времени (справа)

Траектория манипулятора из одной конфигурации в другую в пространстве сочленений есть гладкая функция времени, описываемая полиномом пятой степени.

Перемещение инструмента в плоскости ХУ изображено на рисунке 6а, что полностью соответствует проекции на плоскость ХУ рисунка 2. Ориентация инструмента в углах крена-тангажа-рысканья изображена на рисунке 6б. Изменение углов не наблюдается. Прямые - гладкие.

а) б)

Рисунок 6 - а) Проекция на плоскость ХУ траектории, отработанной в процессе симуляции движения; б) изменение углов крена-тангажа-рысканья за время симуляции

движения

2.3 Скорость Робота-Манипулятора

Перемещая конец инструмента из произвольной точки в желаемую, решением обратной задачи кинематики получаем не только присоединенные координаты сочленений на каждом шаге по времени, но и необходимые скорости и ускорения сочленений [5]. Г раничные условия для скорости и ускорения, как правило, в начальной и конечной точке нулевые [4, 5, 16]. Для реализации движения через произвольное количество точек,

скорость в I-ой точке интервала {/ — 1; /} будет начальной для интервала {I; 1 + 1} [5]. И

только в самой первой точке траектории и точке цели скорость и ускорение инструмента должны быть равны нулю.

Скорость инструмента в абсолютном пространстве определяется вектором [5].

V = ^ V ^ Ч ) .

Введение иглы в мозг при проведении биопсии мозга осуществляется на очень низкой скорости ^ 10—3 м • с—1. В общем случае, скорость введения инструмента в

биологическую ткань играет существенную роль при выполнении той или иной хирургической процедуры. Это связно с тем, что биологическая ткань - нелинейный, неоднородный, анизотропный и вязкоупругий материал. При введении иглы в ткань игла воспринимает нагрузки, а ткань деформируется [17]. В лабораториях по всему миру проводятся исследования реологических свойств биологических тканей и влияния скорости введения иглы на точность проведения операции. В некоторых разработках предлагается динамически возбуждать иглу при введении в ткань [18]. Это приводит к снижению силы трения и упрощает процесс разрезания ткани при прокалывании. Пусть скорость поступательного движения инструмента в декартовых координатах равна

0,006 м/с вдоль оси 2 инструмента

V = (0 0 0.006 0 0 0 )т.

Учитывая интервалы линейного разгона и торможения, для отрезка времени осуществления перехода равного 10 с, график скорости движения инструмента изображен на рисунке 7а. На рисунке 7б изображены соответствующие скорости сочленений при прохождении от точки к точке заданной траектории.

Рисунок 7 - а) Скорость инструмента в абсолютной системе координат; б) скорость сочленений Робота-манипулятора в пространстве присоединенных координат

По аналогии с задачей кинематики здесь необходимо связать скорость движения инструмента в абсолютном пространстве со скоростями сочленений в пространстве

присоединенных координат. В робототехнике эта связь устанавливается через матрицу Якоби преобразования J (q), в общем случае, размерностью 6x6 [4, 5, 16, 17]

v = J(q)q.

Для вычисления скоростей сочленений необходимо найти матрицу обратную матрице Якоби, что в нашем случае требует применения подхода Мура-Пенроуза (Moore-Penrose) [16], поскольку Робот-Манипулятор имеет избыточное число степеней подвижности n = 7.

В общем случае ранг матрицы Якоби равен J (q) = min (6, n). Однако поскольку элементы матрицы J являются функциями положения q, некоторые конфигурации звеньев манипулятора приводят к снижению ранга матрицы. Такие конфигурации манипулятора называются сингулярными или вырожденными и соответствуют случаю, когда определитель матрицы Якоби равен нулю [5]

det (J (q)) = 0.

Эта проблема связана с использованием Эйлеровых углов. В иностранной литературе такое явление называется «Gimbal Lock» или «Шарнирный замок». Из-за того, что конечный результат серии вращений зависит от порядка промежуточных вращений, иногда случается, что вращение вокруг одной оси отображается на вращение вокруг другой оси. Иногда может быть невозможным вращать объект вокруг желаемой оси. Эта конфигурация называется «Шарнирный замок» [5].

Предположим, что объект последовательно вращают вокруг осей Z (на небольшой угол), Y, X и угол вращения вокруг оси Y равен 90°. В этом случае вращение вокруг оси Z происходит первым, что корректно. Вращение вокруг оси Y тоже совершается корректно. Однако после вращения вокруг оси Y на 90°, ось X отображается на ось Z . Таким образом, совершая вращение вокруг (относительной) оси X , фактически, совершается вращение объекта вокруг (абсолютной) оси Z [20].

Оценить наличие сингулярных точек позволяет расчет показателя манипулятивности. MATLAB® Robotics Toolbox использует метод Yoshikawa, вычисляющий показатель манипулятивности пропорционально объему эллипсоида

m = -\] det (JJT).

Если данный эллипсоид близок к сфере, то его радиусы являются величинами одного порядка и, следовательно, можно добиться произвольной допустимой скорости движения инструмента. Однако если один из радиусов очень мал и эллипсоид напоминает пластину, как показано на рисунке 8а, это означает, что инструмент не может достичь скорости в

направлении этого малого радиуса. В данном случае это ось X. Это распространенный, устоявшийся в робототехнике подход [5, 16].

Исследуем возможности Робота-Манипулятора развивать скорость в каждой точке заданной траектории. Для этого вычислим показатель манипулятивности и изобразим эллипсоид скоростей. На рисунке 86 представлен эллипсоид линейной скорости для конфигурации манипулятора в первой узловой точке траектории, то есть для вектора

присоединенных координат q1 = (д1, д2, д3, д4, д5, д6, д7)Г .

Рисунок 8 - а) Критический случай: эллипсоид вращения вблизи сингулярной точки; б) эллипсоид линейной скорости конфигурации Робота-Манипулятора в первой узловой

точке траектории

Показатель манипулятивности равен 0,08886. Инструмент может достигать большей скорости в направлении оси 2 , чем в направлении осей х и у . На рисунке 9 изображены эллипсоиды линейной скорости в положениях манипулятора, соответствующих другим узловым точкам траектории.

Рисунок 9 - Эллипсоиды линейной скорости других конфигураций Робота-Манипулятора

По размеру эллипсоиды похожи друг на друга, так как имеют практически одинаковое значение показателя манипулятивности. Однако изображение эллипсоидов важно, поскольку именно величины радиусов указывают направление, в котором манипулятор не может достигать скорости. Критических ситуаций не наблюдается, что говорит об отсутствии сингулярностей при прохождении запланированной траектории. На рисунке 10 изображен эллипсоид угловой скорости Робота-Манипулятора для первой конфигурации.

Рисунок 10 - Эллипсоид угловой скорости конфигурации Робота-Манипулятора в первой

узловой точке траектории

Поступательная и вращательная скорости имеют разные размерности. Поэтому соответствующие эллипсоиды изображены отдельно. Однако манипулятивность комбинирует в себе информацию о линейной и вращательной скоростях инструмента манипулятора, поэтому ее величина в обоих случаях одна и та же. Эллипсоиды угловых скоростей других конфигураций Робота-Манипулятора приведены на рисунке 11.

Рисунок ll - Эллипсоиды угловой скорости других конфигураций Робота-Манипулятора

Инструмент может достигать большей скорости в направлении оси 2, чем в направлении осей х и у . Однако критических случаев не наблюдается.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2.4 Динамика Робота-Манипулятора

Аналогично задачам кинематики, существует две задачи динамики: прямая и обратная [4, 5, 16].

Прямая задача динамики: по заданным моментам О в сочленениях определить обобщенные ускорения,

Я = Ґ Я, О),

интегрирование которых позволит получить значения обобщенных скоростей и координат сочленений

Я = £ я ^/, я = £ я ^/.

Обратная задача динамики: по заданным обобщенным координатам, скоростям и ускорениям определить действующие в сочленениях манипулятора моменты

О = Ь (сі, Я , Я).

Уравнение движения, полученное одним из двух методов: Лагранжа-Эйлера или Ньютона-Эйлера имеет вид

м (я)я+с (я, я)я++g (я) = 0+1т (я)¥ех1

или для случая отсутствия внешних сил, действующих на инструмент

м (я) Ч + с (я,<ї )я + Бя + ш (я) = О,

где я, я, я - векторы обобщенных положений, скоростей и ускорений сочленений соответственно; М - матрица инерции; С - матрица кориолисовых и центробежных сил; Б - трение; ш - гравитационная нагрузка; J - Якобиан манипулятора; ^ - вектор нагрузок, приложенных к концу инструмента; О - вектор обобщенных сил [16].

Проведем анализ динамических свойств Робота-Манипулятора. На рисунке 12 представлено изменение моментов во втором и третьем сочленении Робота-Манипулятора от гравитационной нагрузки при изменении обобщенных координат д2 и д3 от — п до п . Полностью вертикальное положение Робота-Манипулятора, изображенное на рисунке 1а, соответствует нулевому значению обобщенных координат .

Тогаие (1ие 1о бгаиііу оп .Іоті 2 Т , _

Тотие аие Іо ъгау^ оп иоіггіЗ

Рисунок 12 - Влияние гравитационной нагрузки на моменты: во втором сочленении

(слева), в третьем сочленении (справа)

Из рисунка видно, что значение момента во втором сочленении меняется в интервале [—50, + 50] Нм, а в третьем сочленении - в интервале [—6, +6] Нм. Такой тип

анализа важен для правильного подбора двигателей. Результаты аналогичных вычислений для 4-го, 5-го и 6-го, 7-го сочленений приведены на рисунках 13 - 14.

Рисунок 13 - Влияние гравитационной нагрузки на моменты: в четвертом сочленении

(слева), в пятом сочленении (справа)

Torque due to Gravity on Joint б Torq|1(! clue ,0 Gravi^ on Joillt ,

Рисунок 14 - Влияние гравитационной нагрузки на моменты: в шестом сочленении

(слева), в седьмом сочленении (справа)

Для 7-го сочленения момент имеет маленькое значение, что корректно, поскольку седьмым звеном является инструмент - биопсийная игла. Моменты в сочленениях в

зависимости от конфигурации q' =(q1, q2, q3, q4, q5, q6, q7 ) Робота-Манипулятора

приведены на рисунке 15.

3 -

■' 1

-8........ i —i-i i

01 23456789 10

Time step

Рисунок 15 - Моменты в сочленениях в зависимости от конфигурации Робота-

Манипулятора

Так как траектория прямолинейная, то значительных изменений крутящих моментов не наблюдается за исключением второго сочленения. Связанное с ним звено совершает больше манипуляций, чем другие звенья.

Матрица инерции М также является функцией положения манипулятора. На рисунке 16а изображено значение инерции первого сочленения как функции

присоединенных переменных сочленений 2 и 3 - М11 (д2, д3), на рисунке 166 - М12 (д2, д3).

Рисунок 16 - а) Значение инерции первого сочленения как функции присоединенных переменных сочленений 2 и 3 - М11 (д2,д3); б) М12 (д2, д3)

2.5 Управление Роботом-Манипулятором

Если движение манипулятора описывается уравнениями Лагранжа-Эйлера или Ньютона-Эйлера, задачей управления является нахождение управляющих моментов [4]. В иностранной литературе этот метод называется Computed Torque Control/ Inverse Dynamic

Control - метод вычисления управляющих моментов [5, 16, 17]. На рисунке 17 приведена схема модели управления в MATLAB® Simulink.

Обзор литературы показывает, что в большинстве случаев коэффициенты усиления выбирают постоянными, причем процесс подбора не является трудоемким [5, 10, 11, 16]. Подавая на вход требуемые положения q, скорости q и ускорения q сочленений и подбирая коэффициенты усиления, минимизируем ошибку по положению и по скорости. Перемещаясь вдоль траектории необходимо обеспечить точность позиционирования инструмента не более 0,05 мм в каждой узловой точке.

Отладка схемы управления позволила определить подходящие параметры системы, обеспечивающие необходимую точность. Приняв время интегрирования t = 10 с, количество шагов по времени при перемещении от точки к точке траектории N = 60, коэффициент усиления обратной связи по положению Kd = 110, а по скорости Kv = 80

получаем следующие результаты. Ошибка по положению и по скорости каждого сочленения изображена на рисунке 18а, б.

Рисунок 17 - Схема модели управления в MATLAB® Simulink

Рисунок 18 - а) Ошибка по положению; б) ошибка по скорости

Видно, что в первом случае порядок ошибки равен 10 5, а во втором - 10 4, что, на самом деле является хорошим результатом. Требуемые и полученные координаты сочленений представлены на рисунке 19а,б.

q [rad]

а)

Joint 2 Coordinate Versus Time

Joint 3 Coordinate Versus Time

Joint 4 Coordinate Versus Time

5.4779 5.4779 5.4779 5.4779 5.4779 Time [s]

5.4043 5.4043 5.4043 5.4043

Time [s]

5.5738 5.5738 5.5738 5.5738 5.5738 5.5738 Time [s]

Joint 5 Coordinate Versus Time

Joint 6 Coordinate Versus Time

Joint 7 Coordinate Versus Time

1 0.2985 0.2985

------Demand

------Actual

Time [s]

7.2651 7.2651 7.2651 7.2651 7.2651 Time [s]

Time [s]

б)

Рисунок 19 - Требуемые и полученные координаты сочленений

Требуемая и полученная траектории движения инструмента в пространстве представлены на рисунке 20, а на рисунке 21 - в проекциях на плоскости УХ и ХУ .

Рисунок 20 - Требуемая (слева) и полученная (справа) траектории движения инструмента

в пространстве

ЕпсІ-ЕІТесІог Тга]е(Логу іп УІ

ЕпсІ-ЕІТесІог Т^ейогу і її ХУ

а)

б)

Рисунок 21 - Требуемая и полученная траектории движения проекциях на плоскости УХ

(слева) и ХУ (справа)

Из графиков видно, что движение конца инструмента между узловыми точками осуществляется по окружности. Это связано с тем, что при перемещении инструмента между узловыми точками за определенное количество шагов по времени, известны координаты только этих узловых точек. Поскольку во время движения Робот-Манипулятор вращается вокруг своего первого звена - «талии», то естественно при совместном движении инструмент будет двигаться по дуге окружности [5]. Точность позиционирования инструмента в узловых точках приведена на рисунке 22 и ее

максимальное по модулю значение составляет др°1п1 _ 0,7675 -10~б м или ДР°Ь1 _ 0,0008 мм.

х 107 Position Error in Desired Trajectory Points

8 6 4

ш Q о

о ^

CL

-4 -6 -8

1 2 3 4 5 6 7 8 9 10 Tl

Desired Trajectory Points

Рисунок 22 - Точность позиционирования инструмента в узловых точках траектории

Проекция заданной и полученной траекторий движения на плоскость XZ показана на рисунке 23. Точность позиционирования в интервалах между заданными узловыми

точками траектории составляет порядка Д^ _ 0,7 мм.

і і і і

Рисунок 23 - Точность позиционирования в интервалах между заданными узловыми

точками траектории

На рисунке 24 представлены составляющие вектора скорости движения инструмента в абсолютной системе координат в заданных узловых точках (слева) и на протяжении всей траектории движения (справа). Видно, что график 24 (слева) полностью соответствует рисунку 7а. Максимальное значение ошибки по скорости в узловых точках составляет Ар1ПІ = 0,8816 • 10~5 м • с-1, а в интервалах между точками - порядка

А1"1 = 9 -10~3 м • с-1.

Time [sj

Time [s]

Рисунок 24 - Составляющие вектора скорости движения инструмента в абсолютной системе координат в заданных узловых точках (слева) и на протяжении всей траектории движения (справа)

3 Анализ результатов и общие выводы

Изучение проблемы позиционирования инструмента хирургического Робота-Манипулятора позволяет сделать следующие выводы. Наличие семи степеней подвижности увеличивает маневренность Робота-Манипулятора, а, следовательно, возможности его использования. Выбранная система управления и подобранные

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

параметры позволили с точностью Др1п! = 0,0008 мм позиционировать инструмент в заданных точках траектории. Значение ошибки по скорости в этих точках составляет дрот! = 0,8816 • 10~5 м • с-1, что, практически можно считать равной нулю. Величина ошибки позиционирования инструмента в интервалах между узловыми точками траектории составляет Д1"1 = 0,7 мм, что меньше, чем требуется техническим заданием

(1 мм) [1], однако, больше, чем ожидается от нейрохирургических роботов-ассистентов [15]. Поскольку выбранное количество узловых точек траектории мало и выбрано лишь для удобства расчетов, данное значение нельзя считать показательным. Скорость в интервалах между узловыми точками на данном этапе не является особенно важным критерием, за исключением нулевой скорости в точки цели.

Заключение

Полученные результаты говорят о том, что разрабатываемая модель Робота-Манипулятора позволяет выполнять нейрохирургические процедуры, поскольку имеет

высокие показатели точности позиционирования инструмента в заданных точках траектории. На практике нейронавигационные станции обеспечивают высокую дискретизацию запланированной траектории, что сокращает расстояние между точками, и, тем самым повышает точность движения инструмента в интервалах между узловыми точками.

Благодарность

Работа выполнена при поддержке Министерства образования и науки РФ в рамках федеральной целевой научно-технической программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России» на 2007 - 2012 годы, номер контракта 16.523.11.3011.

Список литературы

1. Робот-Манипулятор: отчет о НИР/ ЗАО «ЭКОИНВЕНТ»; рук. ОС. Нарайкин. М.,

2012. 211 с. № ГР 01201251073. Инв. № ЭИ20120518.

2. Ситников А.Р. Биопсия. Режим доступа: http://www.dr-sitnikov.ru/sitnikov58/ (дата

обращения 08.05.2013).

3. Богданова Ю.В., Гуськов А.М., Жидких И.В., Нарайкин О.С., Шурхай В.А.

Проблемы разработки стереотаксических систем наведения хирургического инструмента на примере биопсии головного мозга // Наука и Образование: электронное научно-техническое издание. 2012. № 12. DOI: 10.7463/0113.0486770

4. Fu K.S. Gonzalez R.C., Lee C.S.G. Robotics: Control, Sensing, Vision and Intelligence.

McGraw-Hill Book Company, 1987. 580 p.

5. Corke P. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer,

2011. 558 c. DOI: 10.1007/978-3-642-20144-8

6. Piltan F., Emamzadeh S., Hivand Z., Shahriyari F., Mirzaei M. PUMA-560 Robot

Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses // International Journal of Robotics and Automation (IJRA). 2012. Vol. 3, iss. 3. P. 167191.

7. Khosla K. Choosing Sampling Rates for Robot Control. Pittsburgh: Carnegie Mellon

University, 1987. 22 p.

8. Jin N.M. Neuro Feedback Linearization in the Control of Robotic Manipulators: Degree of

Master. National University of Singapure, 2004. 98 p.

9. Gupta M.K., Singh A.K., Bansal K. Trajectory Tracking Control of Robot Manipulators //

International Journal of Computer Applications. 2013. Vol. 64, no. 10. P. 28-32.

rd

10. Craig J.J. Introdiction to Robotics, Mechanics and Control. 3 ed. Pearson Education International, 2005. 408 p.

11. Kang H. Robotic Assisted Suturing in Minimally Invasive Surgery: Degree of PhD. New York, Rensselaer Polytechnic Institute, 2002. 183 p.

12. Ata A.A., Myo T.R. Optimal Point-to-Point Trajectory Tracking of Redundant Manipulators using Generalized Pattern Search // International Journal of Advanced Robotic Systems. 2005. Vol. 2, no. 3. P. 239-244.

13. Банин Е.П., Барышева О.П., Батанов А.Ф., Богданова Ю.В., Гуськов А.М.,

Козубняк С.А., Нарайкин О.С., Пуценко А.А. Координатная связь медицинского робота - манипулятора // Наука и Образование: электронное научно-техническое издание. 2012. № 12. DOI: 10.7463/0113.0520630

14. Casadei C., Fiorini P., Martelli S., Montanari M. Improving the Performance of PC-Based Controllers for Robot-Assisted Surgery. California Institute of Technology, Jet Propulsion Laboratory. Available at: http://trs-

new.jpl.nasa.gov/dspace/bitstream/2014/19372/1/98-0715.pdf , accessed 08.05.2013.

15. ООО «Евраз Медикал Групп». ROSA. Режим доступа: http://evrazmed.ru/catalog/robot-assistent/ (дата обращения 08.05.2013).

16. Melchiorri C. Kinematic Model of Robot Manipulators. Presentation. Universita di Bologna. Available at: http://www-

lar.deis.unibo.it/people/cmelchiorri/Files Robotica/FIR 04 Kinem.pdf , accessed

08.05.2013.

17. Heverly M., Dupont P., Triedman J. Trajectory optimization for dynamic needle insertion // Proc. of IEEE International Conference on Robotics and Automation (ICRA) (Barcelona, April 2005). 2005. P. 1646-1651.

18. Allen G., Brailsford B., Hulton A., Hunt W., Ober W., Muftu S. Dynamically Oscillated Biopsy Needle. Available at:

http://www.mie.neu.edu/pdfs/Capstone/Mechanical Engineering/ME%202011%2004%2 0Dynamically%20Qscillating%20Biopsy%20Needle.pdf , accessed 08.05.2013.

19. Siciliano B., Khatib O. (Eds). Springer Handbook of Robotics. Springer Berlin Heidelberg, 2008. 1628 p. DOI: 10.1007/978-3-540-30301-5

20. Матрицы и квартенионы. Режим доступа: http://www.rossprogrammproduct.com/translations/Matrix%20and%20Quaternion%20F AQ.htm#Q31 (дата обращения 20.02.2013).

SCIENTIFIC PERIODICAL OF THE BAUMAN MSTU

SCIENCE and EDUCATION

EL № FS77 - 48211. №0421200025. ISSN 1994-0408

electronic scientific and technical journal

Numerical simulation of surgical robotic manipulator

in point-to-point motion

# 06, June 2013

DOI: 10.7463/0613.0574314

Bogdanova Yu.V., Gus’kov A.M.

Bauman Moscow State Technical University, 105005, Moscow, Russian Federation

[email protected] gouskov [email protected]

In this paper a point-to-point motion problem was considered by the example of brain biopsy. It was emphasized that this operation requires exceptional end-effector positioning accuracy to the target point. End-effector motion was considered as point-to-point Cartesian trajectory tracking. The desired trajectory in Cartesian space was transformed to joint coordinate trajectory in joint space through solving the inverse kinematic problem. Computed-torque control was selected as a control scheme. Desired joint positions, velocities and accelerations were input signals for the inverse dynamic problem with the control low to compute joint torques required for implementing the required end-effector motion. Current joint position, velocity and acceleration were computed through solving the direct dynamic problem. High point-to-point motion accuracy indicators prove adequacy of the available robotic manipulator model and suitability of the selected control scheme. The task of numerical simulation was solved with the use of MATLAB® Robotics Toolbox + Simulink®.

Publications with keywords: instrument positioning, surgical robotic manipulator, trajectory tracking, computed-torque control/ inverse dynamic control, MATLAB® Robotics Toolbox, Simulink®,brain biopsy

Publications with words: instrument positioning, surgical robotic manipulator, trajectory tracking, computed-torque control/ inverse dynamic control, MATLAB® Robotics Toolbox, Simulink®,brain biopsy

References

1. Naraykin O.S., et al. Robot-Manipuliator: otchet o NIR [Robot-Manipulator: report on scientific research works]. Moscow, CJSC «EKOINVENT», 2012. 211 p. Non published.

2. Sitnikov A.R. Biopsija [Biopsy]. Available at: http://www.dr-sitnikov.ru/sitnikov58/ accessed 08.05.2013.

3. Bogdanova Iu. V., Gus'kov A. M., Zhidkikh I. V., Naraikin O. S., Shurkhai V. A. Problemy razrabotki stereotaksicheskikh sistem navedeniia khirurgicheskogo instrumenta na primere biopsii golovnogo mozga [Problems of development of stereotaxic guidance systems designed to control surgical instruments, illustrated by brain biopsy]. Nauka i obrazovanieMGTUim. N.E. Baumana [Science and Education of the Bauman MSTU], 2012, no. 12. DOI: 10.7463/0113.0486770

4. Fu K.S., Gonzalez R.C., Lee C.S.G. Robotics: Control, Sensing, Vision and Intelligence.

McGraw-Hill Book Company, 1987. 580 p.

5. Corke P. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer,

2011. 558 p. DOI: 10.1007/978-3-642-20144-8

6. Piltan F., Emamzadeh S., Hivand Z., Shahriyari F., Mirzaei M. PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses. International Journal of Robotics and Automation (IJRA), 2012, vol. 3, iss. 3, pp. 167191.

7. Khosla K. Choosing Sampling Rates for Robot Control. Pittsburgh, Carnegie Mellon

University, 1987. 22 p.

8. Jin N.M. Neuro Feedback Linearization in the Control of Robotic Manipulators: Degree of Master. National University of Singapure, 2004. 98 p.

9. Gupta M.K., Singh A.K., Bansal K. Trajectory Tracking Control of Robot Manipulators. International Journal of Computer Applications, 2013, vol. 64, no. 10, pp. 28-32.

rd

10. Craig J.J. Introdiction to Robotics, Mechanics and Control. 3 ed. Pearson Education International, 2005. 408 p.

11. Kang H. Robotic Assisted Suturing in Minimally Invasive Surgery: Degree of PhD. New York, Rensselaer Polytechnic Institute, 2002. 183 p.

12. Ata A.A. Myo T.R. Optimal Point-to-Point Trajectory Tracking of Redundant Manipulators using Generalized Pattern Search. International Journal of Advanced Robotic Systems, 2005, vol. 2, no. 3, pp. 239-244.

13. Banin E.P., Barysheva O.P., Batanov A.F., Bogdanova Iu.V., Gus'kov A.M., Kozubniak

S.A., Naraikin O.S., Putsenko A.A. Koordinatnaia sviaz' meditsinskogo robota -manipuliatora [Coordinate relationship of the medical robot - manipulator]. Nauka i obrazovanie MGTU im. N.E. Baumana [Science and Education of the Bauman MSTU],

2012, no. 12. DOI: 10.7463/0113.0520630

14. Casadei C., Fiorini P., Martelli S., Montanari M. Improving the Performance of PC-Based Controllers for Robot-Assisted Surgery. California Institute of Technology, Jet Propulsion Laboratory. Available at: http://trs-

new.jpl.nasa.gov/dspace/bitstream/2014/19372/1/98-0715.pdf , accessed 08.05.2013.

15. OOO «EvrazMedikal Grupp». ROSA [“Evraz Medical Group Ltd”. ROSA]. Available at: http ://evrazmed.ru/catalog/robot-assistent/ , accessed 08.05.2013.

16. Melchiorri C. Kinematic Model of Robot Manipulators. Presentation . Universita di Bologna. Available at: http://www-

lar.deis.unibo.it/people/cmelchiorri/Files Robotica/FIR 04 Kinem.pdf , accessed

08.05.2013.

17. Heverly M. Dupont P., Triedman J. Trajectory optimization for dynamic needle insertion. Proc. of IEEE International Conference on Robotics and Automation (ICRA), Barcelona, April 2005, 2005, pp. 1646-1651.

18. Allen G., Brailsford B., Hulton A., Hunt W., Ober W., Muftu S. Dynamically Oscillated Biopsy Needle. Available at:

http://www.mie.neu.edu/pdfs/Capstone/Mechanical Engineering/ME%202011%2004% 20Dynamically%20Qscillating%20Biopsy%20Needle.pdf , accessed 08.05.2013.

19. Siciliano B., Khatib O. (Eds). Springer Handbook of Robotics. Springer Berlin Heidelberg, 2008. 1628 p. DOI: 10.1007/978-3-540-30301-5

20. Matricy i kvarteniony [Matrices and Quaternions]. Available at: http://www.rossprogrammproduct.com/translations/Matrix%20and%20Quaternion%20F AQ.htm#Q31 , accessed 20.02.2013.

i Надоели баннеры? Вы всегда можете отключить рекламу.