Научная статья на тему 'Characteristics of cooked bricks with incorporation of expanded polystyrene used in building construction'

Characteristics of cooked bricks with incorporation of expanded polystyrene used in building construction Текст научной статьи по специальности «Строительство и архитектура»

CC BY
187
51
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
CHARACTERIZATION / BURNT BRICKS / POLYSTYRENE / DENSITY / MECHANICAL RESISTANCE / ХАРАКТЕРИСТИКА / ОБОЖЖЕННЫЙ КИРПИЧ / ПЕНОПОЛИСТИРОЛ / ПЛОТНОСТЬ / МЕХАНИЧЕСКАЯ ПРОЧНОСТЬ

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Semassou Guy Clarence, Guidi Tognon Clotilde, Toukourou Chakirou Akanho, Assogba Wounon V. Z. Murielle, Vianou Antoine

The article presents the evaluation of local building materials in Benin for their efficient use in building construction. The aim of the study is to produce cooked and lightened bricks with good mechanical, thermal and acoustic properties, and enhance using polystyrene waste. The article shows the results of experimental work on a broad field of applied science: building mechanics. Terracotta blocks have been chosen as a reference material, to which polystyrene was added. The percentage of polystyrene ranges from 0 to 100%, the volume of the reference material being constant. The results showed that the polystyrene percentage increase lowers mechanical properties. These results also showed that the gradual addition of polystyrene-laterite clay mixture has a significant influence on the density and the mechanical strength of the final composite material. The clay used in blocks is taken from Porto-Novo, a town about 30 km from Cotonou, and laterite (red soil) comes from Bakhita, a town 10 km from Cotonou.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Characteristics of cooked bricks with incorporation of expanded polystyrene used in building construction»

УДК [691.41:678.74.002.8]:[539.4:624.01]

Guy Clarence Semassou, Tognon Clotilde Guidi, Chakirou Akanho Toukourou, V. Z. Murielle Assogba Wounon, Antoine Vianou, Gérard Degan

CHARACTERISTICS OF COOKED BRICKS WITH INCORPORATION OF EXPANDED POLYSTYRENE USED IN BUILDING CONSTRUCTION

Abstract. The article presents the evaluation of local building materials in Benin for their efficient use in building construction. The aim of the study is to produce cooked and lightened bricks with good mechanical, thermal and acoustic properties, and enhance using polystyrene waste. The article shows the results of experimental work on a broad field of applied science: building mechanics. Terracotta blocks have been chosen as a reference material, to which polystyrene was added. The percentage of polystyrene ranges from 0 to 100%, the volume of the reference material being constant. The results showed that the polystyrene percentage increase lowers mechanical properties. These results also showed that the gradual addition of polystyrene-laterite clay mixture has a significant influence on the density and the mechanical strength of the final composite material. The clay used in blocks is taken from Porto-Novo, a town about 30 km from Cotonou, and laterite (red soil) comes from Bakhita, a town 10 km from Cotonou.

Key words: characterization, burnt bricks, polystyrene, density, mechanical resistance.

Introduction

To partially address concerns such as reducing energy consumption in buildings, reducing the emission of gases through the greenhouse effect due to large air conditioning facilities and extra protection of environment by recycling waste polystyrene, we conducted an experimental study on the behavior of baked bricks with addition of polystyrene [1-4]. This is an interesting study in the Laboratory of Applied Mechanics and Energetics (LEMA) of the thermomechanical properties of cooked and lightened bricks. According to our surveys, the addition of polystyrene in mortars and concretes help to achieve good thermal insulation of the envelope [5-7]. The main objective of this study is to experimentally characterize the mechanical behavior of fired bricks. One of the objectives is to find earth blocks of acceptable mechanic properties to erect walls or fences and buildings that will be easy to implement, as stipulated by the French and Belgian standards [8, 9]. A weight ratio clay / laterite constant equal to 4 was adopted for all compositions. Then it was playing on the amount of polystyrene (PSE) introduced. Some preliminary tests have indeed shown that the workability of the mortar, the removal and the density of blocks, cracks of the clay during drying and firing, are influenced by the introduction of polystyrene. It has also been shown in this study the influence of the percentage of polystyrene on the bulk density, on the compressive strength of the cubic form of test specimens and the tensile strength of the samples.

Material and methods1 Sample preparation

Materials used. All the materials used in this work are of local origin. For making blocks, the materials used are: clay of Porto-Novo, laterite or earth from Bakhita bar, water and polystyrene, the latter component is also the only variable parameter.

The Laterite or earth bar. Laterite used for making the blocks is taken from a soil in Calavi (Bakhita region). After drying the ground, it was sieved with two sieves (02 mm) for making test pieces to be cooked by taking into account the finer particle size clay. The picture in Fig. 1 shows the appearance of the size used.

1 Nomenclature: b - Width, mm; e - Thickness, m; Ff - Bending breaking load, N; Fc - Compression breaking load, N; L - Length, m;

m - Mass, kg; Rf - Flexual strength, kg; R - Compressive strength, MPa; S - Area, m2; V- Volume, m3; p - Density, kg ■ m-3; PSE - Polystyrene.

Fig. 1. Different sizes (O < 2 mm) of laterite used (diameter less than 2 mm)

The clay. The clay used to make the blocks stabilized by cooking, is a gray clay of Porto Novo. Its average bulk density measured in the dry state was 1200 kg • m-3 [10]. Figure 2 shows pictures of the clay used in the rough, and after sifting. Before use, the clay was collected, dried, crushed and sieved with a sieve of 2 mm.

Fig. 2. Pictures of the clay used

The polystyrene. The expanded polystyrene beads used are suitable for incorporation into the blocks. They have varying diameters (O < 2 mm; 2 < O < 4 mm; O < 4 mm). Its bulk density is about 17.5 kg/m3, which is at least 60 times smaller than the densities of the clay and the earth bar. Figure 3 shows photos of PSE waste and ground product obtained.

Fig. 3. Photos of the polystyrene used

In this study, three granular classes were determined. Pictures 1, 2 and 3 in Fig. 4 show the appearance of the different classes. Only the granular beads class whose diameters are less than or equal to 2 mm was used (photo 1).

Photo 1: Ф < 2 mm Photo 2: 2 < Ф < 4 mm Photo 3: Ф < 4 mm

Fig. 4. Different granular classes PSE

The water dampening. Dampening water is distributed by the drinking water supply network of the university of Abomey-Calavi in Benin.

Hardware used. For making blocks, many current materials and supplies (scales, containers, trowels, molds, formwork oil) are used. Figure 5 shows the pictures of some materials used.

Photo 1: Mold 4x4x16 cm Photo 2: Mold 10x10x3 cm Photo 3: Graduated container Photo 4: Balance

Fig. 5. Photos of some materials used

Modus operandi. All the samples were prepared manually; the mortar mixture is made by using a trowel and the blocks were molded by hand (hand molding). Standard prismatic test (NFP 18-400, NA 2600) of dimensions 4 x 4 x 16 cm has been used for the determination of flexural strengths 3 points. These same samples were used to determine the weight loss. Equivalent cubic specimens (4 x 4 x 4 cm) were obtained by crushing the resulting equivalent cubic test half-prisms. To avoid cracking problems and withdrawal, the samples were therefore dried in the sunlight at the surrounding environment of the laboratory. All cooking preheating the cooling takes about 48 hours [11]; the product remains up for 10 hours in the open fire. The curing kinetics is adopted in accordance with the firing curve of Fig. 6.

Curve k firing grot ind кШ Ыпжн Mill i.i i i i

>oo- Н+Ж ±; H Я® »0C 720 840 rrr.. 9f>0

-Л-

- Phase 1 : slow ascent up to 600 ° C in 480 minutes - Phase 2: Final temperature you have selected (here 1020 - Phase 3: 30 minutes bearing of cooking - Phase 3: Cooling °C)

Fig. 6. Curve showing the various cooking phases [11]

All the tests were made with a temperature of 105°C and a firing temperature of about 1000°C. For each type of test, the number of specimens is three (03) and the test body is: 4 x 4 x 16 cm for mechanical testing and measurements of bulk densities.

For mechanical testing, testing in three flexure (03) dots and those in compression on the half blocks from the Flexural strength were performed.

Formulation. Dosage. The following percentages were studied:

- polystyrene: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of the soil volume measured in accordance with the dosages adopted by Shafi [6]; this, to properly highlight the influence of this by-product in low dosages;

- clay: 80% and 20% laterite.

Of course, for each characteristic of interest, the results were compared with a reference block (control) performed according to the same methods of implementation and assays land and water. The only changing parameter is the mixed assay (content) of the PSE. The studied characteristics are as follows:

- density;

- compressive strength and tensile strength by bending.

Notation C designates blocks stabilized by baking, followed by a number which represents the percentage by volume of polystyrene added to 10 (Table 1).

Table 1

Notations adopted for the different samples

№ Designation Notation

1 Witness block C

2 Block reinforced 10% polystyrene C1

3 Block reinforced 20% polystyrene C2

4 Block reinforced 30% polystyrene C3

5 Block reinforced 40% polystyrene C4

6 Block reinforced 50% polystyrene C5

7 Block reinforced 60% polystyrene C6

8 Block reinforced 70% polystyrene C7

9 Block reinforced 80% polystyrene C8

10 Block reinforced 90% polystyrene C9

11 Block reinforced 100% polystyrene C10

The Table 2 shows the values of different strengths for the manufacture of each type of sample.

Table 2

Compositions of the lightened blocks with polystyrene beads

Mixture, ml: clay (80%) + laterite (20%) 2000

Water, ml 750

PSE volume, ml 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Corresponding PSE weight, g 0 3.5 7 10.5 14 17.5 21 24.5 28 31.5 35

Designation C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Testing the weight loss. The withdrawal measures were accompanied by with the weighing of 4 x 4 x 16 samples in order to determine their densities. Measurements of weight variation were performed using an electromechanical balance at a precision of 0.1 g (Fig. 5, photo 4).

Tensile bending. The flexural tensile strength was determined using a 3-point bending machine 10 kN, on prismatic samples 4 x 4 x 16 cm in accordance with the standard NFP 18-407 (NA 428). The specimens were placed in the testing machine as shown in Fig. 7.

Fig. 7. Bending machine used

After a perfect centering, the loading was carried out with a speed of constant scalability. The machine is provided with a bending device whose principle is shown schematically in Fig. 8.

Fig. 8. Device tensile failure in bending [9]

1

Denoting by Ff the failure of the test of load in bending, the moment of rupture is Ff • — and the

4

corresponding flexural stress is determined by:

Rf =-

1.5 • Ff • l

b3

Compression testing. The compression test is to break the test specimen between the two plates of a compression press. The press used is a compression machine with a capacity of 150 kN. The compression test on equivalent cubes 4 x 4 x 4 cm was made on the same compression machine. The half-prisms 4 x 4 x 16 cm specimens obtained after Flexural strength were broken in compression as shown in Fig. 9.

Fig. 9. Compression breaking device

By appointing the breaking load of the compression cylinder, the stress fracture at the corresponding compression is calculated by [12]:

*=F^.

c b2

By expressing Fc newton and considering the section specimens (40 mm x 40 mm), this resistance in MPa is:

* =■ Fc

1600

Following the withdrawal of the clay after firing, the compression breaking stress, for cooked blocks, is calculated by the following formula:

*=f.

c 4b

The results for each of the 06 half-prisms are rounded to 0.1 MPa and then the close average is calculated. If each one of the results differs from 06 ± 10% of this average, it is discarded and the average is recalculated from the remaining 05 results. If again one of the 05 results deviates ±10% of this new medium, the series of 06 measures are dismissed as prescribed by the standard. When the result is satisfactory, the average thus obtained is the resistance of the mortar to the age considered.

Results and discussion

This section presents the different results obtained in this study so as to show the influence of the percentage of PSE on the bulk density, the compressive strength on cubic specimens and the sample tensile strength.

The bulk density p. The influence of the incorporation of the polystyrene beads on the density of the blocks was studied. The results are compiled in Table 3 and represented by the curve of Fig. 10. In this table, pc indicates the density of the C.

Table 3

Density polystyrene block of samples

Designation C Ci C2 C3 C4 C5 C6 C7 C8 C9 C10

p, kg/m3 1750 1706 1642 1586 1527 1479 1344 1342 1337 1254 1199

p/pc, % 100 97 94 91 87 85 77 77 76 72 69

Reduction, % 0 3 6 9 13 15 23 23 24 28 31

2000

' SÖ

J

0

0 50 100 150

Percentage of polystyrene, %

Fig. 10. Density of the samples tested

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

It is obvious in Fig. 10 that the density of baked bricks eased decreases with the increase of the percentage PSE. For example, the density of the fired brick reference (C) is 1750 kg/m3, whereas the reinforced brick 100% PSE (C10) is only 1199 kg/m3. This corresponds to a decrease of 31%. The Ultra lightweight polystyrene aggregate regarded as voids created within blocks, explains this reduction in density. The lightweight materials become very beneficial when the density reduction rate is at least equal to 15%. With stabilized earth blocks and lightweight, discounts up to 31% were obtained and it is possible to go even further.

PSE influence on the mechanical performance. One of the important points to consider in this research is indeed the mechanical performance. The strengthened polystyrene blocks were compared to control blocks in order to determine their influences depending on the dosages.

- prismatic specimens 4 * 4 * 16 cm: for the testing of resistance to three-point bending;

- half broken into two pieces during the bending test without changing the mechanical characteristics: for testing the resistance to compression.

The results of the companion measures are presented as follows.

Compressive strength .The influence of the incorporation of the polystyrene beads in the resistance Rc of the compression blocks was studied. The results obtained are summarized in the

Table 4 and represented by the curve of Fig. 11.

Figure 11 shows the evolution of compressive strength of the blocks according to the polystyrene rate. In this figure, a lower mechanical strength of the polystyrene blocks was observed compared to control blocks, when the polystyrene content increases. At contents ranging from 10 to 100%, the

compressive strength is reduced from 6 to 68% relative to the control. These decreases of the mechanical strength were observed by several authors such as Shafi, Collins & Ravindrarajah [6, 13]. Indeed, polystyrene aggregates create areas of weakness within the blocks and reduce the area of the resistant section of the test pieces.

Table 4

Results of the compressive strength on samples cubic 4 x 4 x 4 cm

Designation C Ci C2 C3 C4 C5 Сб C7 C8 C9 C10

Rc, MPa 9.51 8.95 8.04 5.71 5.20 4.80 3.44 3.26 3.25 3.17 3.08

Reduction, % 0 6 15 40 45 50 64 66 66 67 68

10 8

6 4 2 0

i- 1

0 50 100 150

Percentage of polystyrene, %

Fig. 11. Evolution of the compressive strength versus percent polystyrene beads

Flexural tensile strength. All results obtained are summarized in the following Table 5.

The curve Fig. 12 shows and confirms that the addition of polystyrene leads to a decrease in strength of the blocks. Either the three-point bending or compression, the trend is the same: "The mechanical performance of blocks with addition of PSE decreases with PSE content". By comparing Fig. 11 and 12, the compressive strength is less sensitive to the polystyrene content than the flexural strength. The polystyrene consumed during firing improves the quality of the cooking but the voids left inside the surface and sometimes are not very favorable to bending. The improved cooking is useful to compression.

1.5

1

0.5

0

0 50 100 Percentage of polystyrene, % 150

Fig. 12. Evolution of the flexural strength based on the percentage of balls polystyrene

Table 5

Results of the bending strength on prismatic specimens 4 x 4 x 16 cm (hot)

Designation С C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Rf, MPa 1.22 1.16 0.80 0.50 0.69 0.59 0.50 0.47 0.45 0.36 0.32

Reduction, % 0 5 34 59 43 57 59 61 63 70 74

Synthesis. The effects of the introduction of the polystyrene in the stabilized earth blocks are highlighted:

- a dropping resistor was expected since the polystyrene reduced resistant surface of a section. It is to manufacture blocks full of air pockets that have no resistance;

- a very different behavior between compression and bending stresses;

- by analogy with the resistance obtained during the compressive strength test, it is found that falls are identical to those of apparent densities, so there is a correlation between the two characteristics;

- the fall of the resistance to compression block is explained by the decrease in density due to charging of the internal structure of the latter.

Conclusion

The exploitation of experimental results, has quantified most mechanical quantities, characteristics of developed samples. The experimental part of the study on the mechanical properties provides guidance for the choice of material for the thermal insulation of buildings, however, considering other criteria for the final choice as behavior these materials are in contact with water. A first contribution concerns the development of new local composite materials for the building envelope. After the experiment, the following conclusions were reached: the variation of these parameters is due to the nature of polystyrene and to the dosing percentages in the composition. Depending on the percentage, the increase in the polystyrene has given:

- a decrease in compressive strength;

- a decrease in the flexural resistance;

- a decrease in the mass and density.

REFERENCES

1. Projet/PNUD/FEM/RAF-G32. Réduction des émissions de gaz a effet de serre grâce à l'amélioration de l'efficacité énergétique des bâtiments en Afrique de l'Ouest: Côte d'Ivoire-Sénégal, 1999.

2. Dreyfus J. Le confort thermique en milieu tropical. Paris, Editions Eyrolles, 1960. 350 p.

3. Galdi P. L'habitat rural au Sénégal. Dakar, Ministère de l'Enseignement Technique et de la Formation Industrielle, 1972. 185 p.

4. Hansen T. C. Recycling of demolished concrete and masonry. London, E&FN Spon. RILEM Report, 1992, no. 6, 316 p.

5. Sotehi N. Caractéristiques thermiques des parois des bâtiments et amélioration de l'isolation. Thèse de doctorat de l'Université Mentouri Constantine. Algérie, 2010. 116 p.

6. Chafi N. Matrice cimentaire renforcée de fibres: Valorisation des sous produits (Polystyrène, copeaux d'acier et copeaux de bois). Thèse de magistère de l'Université Mentouri Constantine. Algérie, 2005. 100 p.

7. Miled K. Effet de taille dans le béton léger de polystyrène expansé. Thèse de doctorat de l'Ecole Nationale des Ponts et Chaussées. France, 21 Novembre 2005. 130 p.

8. Fédération belge de la brique. Manuel maçonnerie de terre cuite. Novembre 2008. Available at: http://www.brique.be.

9. Akhtaruzzaman A. A., Hasnat A. Properties of Concrete Using Crushed Brick as Aggregate. Concrete Internat International, 1983, vol. 5, no. 2, pp. 58-63.

10. Bapke KP. Etude et réalisation de four thermocinétique de cuisson des briques. Mémoire pour le diplôme d'ingénieur des travaux de l'Ecole Polytechnique d'Abomey-Calavi. EPAC/Bénin. 2000. 45 p.

11. Keramon Sa Zi de Mille 35520 Melesse. Déclaration de conformité du four électrique haute température. Juillet 2003. P. 11.

12. Cachim P. B. Mechanical properties of brick aggregate concrete. Construction and Building Materials, 2009, vol. 23, pp. 1292-1297.

13. Collins J., Ravindrarajah S. Temperature development in concrete with expanded polystyrene beads. Melbourne, Australia, 1998. P. 8.

The article submitted to the editors 25.01.2017

INFORMATION ABOÜT THE AUTHORS

Semassou Guy Clarence — Benin, 01 BP 2009 Cotonou, Abomey-Calavi; University of Abomey-Calavi; Candidate of Technical Sciences, Assistant Professor; Lecturer of the Department of Mechanics and Energy; [email protected].

Guidi Tognon Clotilde - Benin, BP 133 Lokossa; Lokossa University, Lokossa University Institute of Technology; Candidate of Technical Sciences, Assistant Professor; Lecturer of the Department of Industrial Engineering and Maintenance, Mechanics and Energy; [email protected].

Toukourou Chakirou Akanho — Benin, 01 BP 2009 Cotonou, Abomey-Calavi; University of Abomey-Calavi; Candidate of Technical Sciences, Assistant Professor; Lecturer of the Department of Mechanics and Energy; [email protected].

Assogba Wounon V. Z. Murielle — Benin, 01 BP 2009 Cotonou, Abomey-Calavi; University of Abomey-Calavi; Assistant of the Department of Informatics; [email protected].

Vianou Antoine — Benin, 01 BP 2009 Cotonou, Abomey-Calavi; University of Abomey-Calavi; Candidat of Technical Sciences, Professor; Professor of the Department of Mechanics and Energy; [email protected].

Degan Gerard — Benin, 01 BP 2009 Cotonou, Abomey-Calavi; University of Abomey-Calavi; Candidate of Technical Sciences, Professor; Professor of the Department of Mechanics and Energy; [email protected].

Гий Кларенс Семасу, Тоньон Клотильде Гуиди, Шакиру Аканхо Тукуру, В. З. Муриелле Ассогва Вунон, Антуа Виану, Жерар Деган

ХАРАКТЕРИСТИКА ОБОЖЖЕННОГО КИРПИЧА С ДОБАВЛЕНИЕМ ПЕНОПОЛИСТИРОЛА ДЛЯ СТРОИТЕЛЬСТВА ЗДАНИЙ

Проведена оценка местных (Бенин) строительных материалов с целью их эффективного использования при строительстве зданий. Задача исследования - получение облегченного кирпича с хорошими механическими, тепло- и звукоизоляционными свойствами, а также расширение использования отходов пенополистирола. Приведены результаты экспериментальных работ в области прикладной науки - строительной механики. В качестве образца выбраны блоки из глины, к которой добавляется пенополистирол. Процентное содержание пенополистирола - от 0 до 100 %, исходя из постоянного объема исходного материала (образца). Результаты позволяют утверждать, что с увеличением процента содержания пенополистирола механические свойства образца снижаются. Кроме того, установлено, что постепенное добавление смеси из пенополистирола и латеритной глины оказывает существенное влияние на плотность и механическую прочность конечного композиционного материала. Для изготовления блоков была использована глина из города Порто-Ново, расположенного примерно в тридцати километрах от Котону, и латерит (краснозем) из Бакита, города в десяти километрах от Котону.

Ключевые слова: характеристика, обожженный кирпич, пенополистирол, плотность, механическая прочность.

СПИСОК ЛИТЕРА ТУРЫ

1. Projet/PNUD/FEM/RAF-G32. Réduction des émissions de gaz a effet de serre grâce à l'amélioration de l'efficacité énergétique des bâtiments en Afrique de l'Ouest: Côte d'Ivoire-Sénégal, 1999.

2. Dreyfus J. Le confort thermique en milieu tropical. Paris: Editions Eyrolles, 1960. 350 p.

3. Galdi P. L'habitat rural au Sénégal. Dakar, Ministère de l'Enseignement Technique et de la Formation Industrielle, 1972. 185 p.

4. Hansen T. C. Recycling of demolished concrete and masonry. London: E&FN Spon. RILEM Report. 1992. No. 6. 316 p.

5. Sotehi N. Caractéristiques thermiques des parois des bâtiments et amélioration de l'isolation: thèse de doctorat de l'Université Mentouri Constantine. Algérie, 2010. 116 p.

6. Chafi N. Matrice cimentaire renforcée de fibres: Valorisation des sous produits (Polystyrène, copeaux d'acier et copeaux de bois): thèse de magistère de l'Université Mentouri Constantine. Algérie, 2005. 100 p.

7. Miled K. Effet de taille dans le béton léger de polystyrène expansé: thèse de doctorat de l'Ecole Nationale des Ponts et Chaussées. France, 21 Novembre 2005. 130 p.

8. Fédération belge de la brique. Manuel maçonnerie de terre cuite. Novembre 2008. URL: http://www.brique.be.

9. Akhtaruzzaman A. A., Hasnat A. Properties of Concrete Using Crushed Brick as Aggregate. Concrete Internat International. 1983. Vol. 5. No. 2. Pp. 58-63.

10. Bapke KP. Etude et réalisation de four thermocinétique de cuisson des briques: mémoire pour le diplôme d'ingénieur des travaux de l'Ecole Polytechnique d'Abomey-Calavi. EPAC/Bénin. 2000. 45 p.

11. Keramon Sa Zi de Mille 35520 Melesse. Déclaration de conformité du four électrique haute température. Juillet 2003. P. 11.

12. Cachim P. B. Mechanical properties of brick aggregate concrete. Construction and Building Materials. 2009. Vol. 23. Pp. 1292-1297.

13. Collins J., Ravindrarajah S. Temperature development in concrete with expanded polystyrene beads. Melbourne, Australia, 1998. P. 8.

Семасу Гий Кларенс - Бенин, 01 ВР 2009 Котону, Абомей-Калави; Университет Або-мей-Калави; канд. техн. наук, доцент; преподаватель кафедры механики и энергетики; [email protected].

Гуиди Тоньон Клотильде — Бенин, ВР 133 Локосса; Технологический институт университета г. Локосса; канд. техн. наук, доцент; преподаватель кафедры промышленной инженерии, механики и энергетики; [email protected].

Тукуру Шакиру Аканхо — Бенин, 01 ВР 2009 Котону, Абомей-Калави; Университет Абомей-Калави; канд. техн. наук, доцент; преподаватель кафедры механики и энергетики; [email protected].

Ассогба Вунон В. 3. Муриелле — Бенин, 01 ВР 2009 Котону, Абомей-Калави; Университет Абомей-Калави; ассистент кафедры информатики; [email protected].

Виану Антуан — Бенин, 01 ВР 2009 Котону, Абомей-Калави; Университет Абомей-Калави; канд. техн. наук, профессор; профессор кафедры механики и энергетики; [email protected]

Деган Жерард — Бенин, 01 ВР 2009 Котону, Абомей-Калави; Университет Абомей-Калави; канд. техн. наук, профессор; профессор кафедры механики и энергетики; ger_degan @yahoo Лг.

Статья поступила в редакцию 25.01.2017

ИНФОРМАЦИЯ ОБ АВТОРАХ

i Надоели баннеры? Вы всегда можете отключить рекламу.