Научная статья на тему 'BLOOD MINERAL PROFILE IN NEWBORN CALVES WITH INTRAUTERINE GROWTH RETARDATION'

BLOOD MINERAL PROFILE IN NEWBORN CALVES WITH INTRAUTERINE GROWTH RETARDATION Текст научной статьи по специальности «Ветеринарные науки»

CC BY
59
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Siberian Journal of Life Sciences and Agriculture
Scopus
ВАК
Область наук
Ключевые слова
INTRAUTERINE GROWTH RETARDATION / CATTLE / BLOOD ANALYSIS / MACROMINERALS / TRACE ELEMENTS

Аннотация научной статьи по ветеринарным наукам, автор научной работы — Chernitskiy Anton E., Ermilova Tatiana S., Salimzade Emil A.O., Safonov Vladimir A.

Widespread intrauterine growth retardation of embryo and fetal (IUGR) in cattle and its negative effects on postnatal growth and offspring health threaten the economic sustainability of livestock production. IUGR calves often exhibit birth weight deficits, early death, metabolic abnormalities, low growth rate, and poor feed utilization. Effective correction of these disorders is impossible without a detailed study of the causes, mechanisms of development and consequences of IUGR. In the present work, a comparative analysis of the content of macrominerals and trace elements in the blood of newborn Simmental calves with IUGR (Group I, n = 20) and the physiological course of pregnancy in their mothers (Group II, n = 20) was carried out. Blood for studies in calves was obtained at 1 day of age, before the 4th feeding of colostrum. The content of sodium, potassium, calcium and magnesium in blood serum samples and the content of iron, copper, zinc, manganese, cobalt and selenium in whole blood samples were studied by atomic absorption spectrometry (AA6300, Shimadzu, Japan). Group I calves had increased serum potassium (by 6.7%, P = 0.022) and magnesium (by 6.3%, P = 0.004) and decreased sodium (by 4.3%, P = 0. 005), reduced whole blood selenium (by 41.0%, P = 0.0001), copper (by 23.6%, P = 0.0001), and manganese (by 23.4%, P = 0.005) compared with Group II animals. The blood content of the other minerals studied did not differ significantly between the groups. The possible causes and consequences of the identified disorders of the mineral blood profile in newborn calves with IUGR were analyzed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «BLOOD MINERAL PROFILE IN NEWBORN CALVES WITH INTRAUTERINE GROWTH RETARDATION»

БИОХИМИЯ, ГЕНЕТИКА И МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

BIOCHEMISTRY, GENETICS AND MOLECULAR BIOLOGY

DOI: 10.12731/2658-6649-2022-14-2-52-70 UDC 636.2:619:618.3:577.1

BLOOD MINERAL PROFILE IN NEWBORN CALVES WITH INTRAUTERINE GROWTH RETARDATION

A.E. Chernitskiy, T.S. Ermilova, E.A.O. Salimzade, V.A. Safonov

Widespread intrauterine growth retardation of embryo and fetal (IUGR) in cattle and its negative effects on postnatal growth and offspring health threaten the economic sustainability of livestock production. IUGR calves often exhibit birth weight deficits, early death, metabolic abnormalities, low growth rate, and poorfeed utilization. Effective correction of these disorders is impossible without a detailed study of the causes, mechanisms of development and consequences of IUGR. In the present work, a comparative analysis of the content of macrominerals and trace elements in the blood of newborn Simmental calves with IUGR (Group I, n = 20) and the physiological course of pregnancy in their mothers (Group II, n = 20) was carried out. Bloodfor studies in calves was obtained at 1 day of age, before the 4th feeding of colostrum. The content of sodium, potassium, calcium and magnesium in blood serum samples and the content of iron, copper, zinc, manganese, cobalt and selenium in whole blood samples were studied by atomic absorption spectrometry (AA6300, Shimadzu, Japan). Group I calves had increased serum potassium (by 6.7%, P = 0.022) and magnesium (by 6.3%, P = 0.004) and decreased sodium (by 4.3%, P = 0. 005), reduced whole blood selenium (by 41.0%, P = 0.0001), copper (by 23.6%, P = 0.0001), and manganese (by 23.4%, P = 0.005) compared with Group II animals. The blood content of the other minerals studied did not differ

significantly between the groups. The possible causes and consequences of the identified disorders of the mineral blood profile in newborn calves with IUGR were analyzed.

Keywords: intrauterine growth retardation; cattle; blood analysis; macromin-erals; trace elements

For citation. Chernitskiy A.E., Ermilova T.S., Salimzade E.A.O., Safonov V.A. Blood mineral profile in newborn calves with intrauterine growth retardation. Siberian Journal of Life Sciences and Agriculture, 2022, vol. 14, no. 2, pp. 52-70. DOI: 10.12731/2658-6649-2022-14-2-52-70

МИНЕРАЛЬНЫЙ ПРОФИЛЬ КРОВИ У НОВОРОЖДЕННЫХ ТЕЛЯТ С ВНУТРИУТРОБНОЙ ЗАДЕРЖКОЙ РАЗВИТИЯ

А.Е. Черницкий, Т.С. Ермилова, Э.А.О. Салимзаде, В.А. Сафонов

Широкое распространение внутриутробной задержки развития эмбриона и плода (ВЗРП) среди крупного рогатого скота и её негативное влияние на постнатальный рост и здоровье потомства угрожают экономической устойчивости животноводства. Телята с внутриутробной задержкой развития часто демонстрируют дефицит веса при рождении, раннюю гибель, нарушения обмена веществ, низкую интенсивность роста и плохое использование корма. Эффективная коррекция этих нарушений невозможна без детального исследования причин, механизмов развития и последствий ВЗРП. В настоящей работе проведен сравнительный анализ содержания макро- и микроэлементов в крови у новорожденных телят симментальской породы с ВЗРП (Группа I, n = 20) и физиологическим течением беременности у их матерей (Группа II, n = 20). Кровь для исследований у телят получали в 1-суточном возрасте, перед 4-м кормлением молозивом. Методом атомно-адсорбционной спектрометрии (AA6300, Shimadzu, Япония) в образцах сыворотки крови исследовали содержание натрия, калия, кальция и магния, в образцах цельной крови - содержание железа, меди, цинка, марганца, кобальта и селена. У телят Группы Iустановлено повышенное содержание в сыворотке крови калия (на 6.7%, P = 0.022) и магния (на 6.3%, P = 0.004) и пониженное натрия (на 4.3%, P = 0.005), пониженное содержание в цельной крови селена (на 41.0%, P = 0.0001), меди (на 23.6%, P = 0.0001) и марганца (на 23.4%, P = 0.005) по

сравнению с животными Группы II. Содержание в крови других исследованных минералов достоверно не различалось между группами. Анализируются возможные причины и последствия выявленных нарушений минерального профиля крови у новорожденных телят с ВЗРП.

Ключевые слова: внутриутробная задержка развития; крупный рогатый скот; анализ крови; макроэлементы; микроэлементы

Для цитирования. Черницкий А.Е., Ермилова Т.С., Салимзаде Э.А.О., Сафонов В.А. Минеральный профиль крови у новорожденных телят с внутриутробной задержкой развития //Siberian Journal of Life Sciences and Agriculture. 2022. Т. 14, № 2. C. 52-70. DOI: 10.12731/2658-6649-2022-14-2-52-70

Introduction

Embryo and fetal intrauterine growth retardation (IUGR), defined as a mismatch between the size of the developing embryo/fetus and gestational age, is a fairly common pathology among livestock [25, 51]. According to recent studies [2, 36, 46], 34.4-37.6% of pregnant cows have IUGR. The development of IUGR is caused by genetic factors [25, 51], malnutrition [23, 46, 51], endocrine and immune disorders [4, 25, 27, 36], stress [25, 26, 48], and intoxication [36, 44]. Newborns with IUGR often demonstrate body weight deficiency [20, 51], are predisposed to metabolic and infectious diseases [6, 25, 33, 51]. The economic damage from IUGR consists of the costs associated with the treatment, culling and death of such calves [6, 9, 37], reduction in their growth intensity and feed utilization efficiency [6, 20, 21, 51]. Thus, IUGR is a serious problem for beef and dairy cattle breeding, reducing the profitability of the industry.

Despite considerable interest in the problem of IUGR in cattle [11, 22, 36, 44, 45], only sporadic studies have investigated metabolic disorders in newborn calves associated with IUGR [6, 13, 25, 33, 51]. It has been shown [6, 33, 51] that newborns with IUGR are characterized by hypoglycemia, hypoxemia, lactoacidosis, insufficiency of antioxidant system and dyslipidemia. Given the important role of macrominerals and trace elements in the regulation of metabolism [19, 49], it is reasonable to expect that even minor changes in the bioelement profile of the newborn (excess, deficiency or imbalance of minerals in the body) can lead to profound disorders in its postnatal adaptation.

The aim of our study was to conduct a comparative analysis of the content of macrominerals (sodium, potassium, calcium, magnesium) and trace elements (iron, copper, zinc, manganese, cobalt, selenium) in blood of newborn calves with IUGR and the physiological course of pregnancy in their mothers.

Materials and methods

The objects of the study were 40 1-day-old calves weighing 34-55 kg obtained from Simmental cows (with productivity of 5865-9176 kg during the previous lactation) from the peasant farm "Rechnoye", Khlevensky District, Lipetsk Region, Russian Federation - two groups of 20 animals. Group I included newborn cows (12 males and 8 females) with IUGR in anamnesis; Group II included progeny of cows with a physiological course of pregnancy (9 males and 11 females).

IUGR in cows was diagnosed by transrectal palpation and echography using an ultrasound scanner "Easi-Scan-3" (BCF Technology Ltd., UK) with a 4.5-8.5 MHz linear transducer. At 38-45 days after insemination and conception, the criteria for fetuses and embryos underdevelopment were considered to be the coccyoparietal size less than 16 mm and the body diameter less than 9 mm, at 60-65 days, less than 45 mm and 16 mm, respectively; at 110-115 days, the fetal horn diameter was less than 15 cm and the placenta less than 17 mm [2, 36]. The first portion of colostrum from their mothers was given to the calves within 1.5 hours after birth, then they received two more feedings during the day with an interval of 5-6 hours - a total of 4.5-5 liters of colostrum for three feedings.

Blood for studies in animals was obtained in the morning on an empty stomach, before the 4th feeding, by puncturing the jugular vein using vacuum systems for blood sampling. Lithium heparin was used as anticoagulant. To obtain serum, blood samples without anticoagulant were incubated for 1 hour at room temperature and then centrifuged (UC-1612, ULAB, China) at 4000 x g for 10 minutes. The resulting serum and whole blood samples were frozen and stored in liquid nitrogen at -195 °C until analysis.

Quantification of sodium, potassium, calcium and magnesium in serum samples, and iron, copper, zinc, manganese, cobalt and selenium in whole calf blood samples was performed by atomic absorption spectrometry (AA6300, Shimad-zu, Japan) as described previously [28].

Statistical data processing was performed using IBM SPSS Statistics 20.0 program (IBM Corp., USA). All data were expressed as mean ± standard deviation and median. The reliability of differences between calf groups was determined using the Independent-samples Mann-Whitney U test.

Results

The results of determining the concentration of macro- and micronutrients in the blood of calves are presented in Tables 1 and 2, respectively.

Table 1.

Content of macrominerals in blood serum of newborn calves

Element Group I (n = 20) Group II (n = 20) p*

Sodium (mmol/L) 139.6 ± 6.6 (140.2) 149.6 ± 9.7 (146.5) 0.005

Potassium (mmol/L) 5.27 ± 0.24 (5.29) 5.09 ± 0.35 (4.96) 0.022

Calcium (mmol/L) 2.87 ± 0.08 (2.91) 2.97 ± 0.29 (3.02) 0.300

Magnesium (mmol/L) 1.05 ± 0.09 (1.01) 0.92 ± 0.13 (0.95) 0.004

Data are presented as mean ± standard deviation (median). * Significance level.

From Table 1 we can see that in Group I calves the median values of serum potassium and magnesium were significantly higher (by 6.7% and 6.3% respectively, P < 0.05-0.01) and sodium was lower (by 4.3%, P < 0.01) than in Group II animals. The median values of neonatal serum calcium concentrations did not differ significantly between the samples. However, Group I animals had lower serum sodium-potassium ratios (26.5 ± 0.8: 1 (median 26.2: 1) versus 29.4 ± 0.3: 1 (median 29.5: 1) in Group II) and calcium-magnesium ratios (2.76 ± 0.27: 1 (median 2.86: 1) versus 3.25 ± 0.36: 1 (median 3.22: 1) in Group II).

The data in Table 2 show that Group I calves were characterized by lower whole blood concentrations of copper (by 23.6%, P < 0.001), manganese (by 23.4%, P < 0.01) and selenium (by 41.0%, P < 0.001) compared with Group II animals. At the same time, differences between neonatal groups in the content of iron, zinc, and cobalt in whole blood were statistically insignificant.

Table 2.

Trace elements content in whole blood in newborn calves

Element Group I (n = 20) Group II (n = 20) p*

Iron (mmol/L) 3.53 ± 0.26 (3.63) 3.60 ± 0.31 (3.61) 0.610

Copper (^mol/L) 9.67 ± 0.51 (9.47) 12.9 ± 2.1 (12.4) 0.0001

Zinc (^mol/L) 35.5 ± 4.5 (33.9) 39.1 ± 7.8 (40.6) 0.212

Manganese (^mol/L) 1.95 ± 0.36 (1.80) 2.37 ± 0.43 (2.35) 0.005

Cobalt (^mol/L) 1.05 ± 0.36 (1.04) 0.69 ± 0.23 (0.66) 0.066

Selenium (^mol/L) 1.39 ± 0.44 (1.44) 2.37 ± 0.29 (2.44) 0.0001

Data are presented as mean ± standard deviation (median). * Significance level.

Discussion

Comparison of our results with the data of other researchers [10, 19, 29] showed that in Group II calves, the blood content of the studied macrominerals and trace elements was generally within the reference values. Newborn calves with IUGR (Group I) had lower serum sodium content [10, 29, 47] and high-

er serum magnesium content [1, 10]. Serum potassium concentration in these calves, although higher (by 6.7%, P = 0.022) compared with Group II animals, remained within the reference interval [1, 29]. Serum calcium concentrations in neonates with IUGR were also within the reference range [10, 17, 34]. Serum sodium-potassium and calcium-magnesium ratios are the most important physiological constants regulating osmotic pressure, neural and muscular excitation, activation of many enzyme systems and metabolic adaptations of the newborn in general [18, 19, 29, 50]. It is natural that their values correlate with the level of physiological maturity [1, 33] and viability of newborn calves [7, 15]. The present study showed that in 1-day-old calves with IUGR, the serum sodium-potassium ratio ranged from 25.7: 1 to 28.3: 1 and the calcium-magnesium ratio from 2.27: 1 to 2.96: 1. In offspring of cows with physiological course of pregnancy, these values were markedly higher, (28.9-29.9): 1 and (2.64-3.99): 1, respectively. Our data confirm the results of an earlier study [33], which also found a reduced (by 11.2%, P < 0.01) serum calcium-magnesium ratio in animals with IUGR 24 hours after birth. The electrolyte balance abnormalities detected in 1-day-old calves with IUGR (Table 1) are risk factors for respiratory dysfunction [1, 7] and colostral immunodeficiency [1, 8], which must be considered when developing a system of treatment and preventive measures.

It is known that the development of oxidative stress in infants with IUGR is associated with intrauterine deficiency of selenium and copper [6, 13, 26, 49] and, to a lesser extent, with zinc and manganese deficiency [6, 30, 40, 43]. The results of the current study found that 1 -day-old calves with IUGR had lower blood levels of selenium (by 41.0%, P = 0.0001), copper (by 23.6%, P = 0.0001) and manganese (by 23.4%, P = 0.005) compared with offspring of physiologically pregnant cows; the whole blood concentrations of other trace elements (iron, zinc and cobalt) were not significantly different between groups (Table 2). Previously, lower (compared with our data) whole blood selenium levels were reported in newborn Red Holstein calves, from 0.56 to 1.49 ^mol/L before the first colostrum intake and from 0.52 to 1.68 ^mol/L by the end of the milk period, but comparable with the blood selenium content of their mothers (0.47 to 1.46 ^mol/L) [38]. These differences, apparently, are a consequence of different biogeochemical conditions in the regions where the research was conducted, rather than breed specifics of cattle [38, 40, 41]. Lipetsk region of the Russian Federation, where our study was carried out, is considered a reference region for the content of selenium in soils and forages [3, 40], the consequence of which is the high content of the element in the blood of experimental calves (Table 2). However, even under these conditions, a marked decrease in selenium content in the blood of newborn calves with

IUGR (Table 2) may be critical for their postnatal adaptation [6, 26, 41, 49]. The biological role of selenium is not limited to its antioxidant activity, the element is involved in the regulation of thyroid function, metabolism, immune system and reproductive function in animals [6, 32, 49]. Therefore, the detected deficiency of selenium in the blood of newborn calves with IUGR should be timely corrected by the additional introduction of selenium-containing supplements in their diet or by injecting selenium preparations for the prevention of metabolic and infectious diseases [6, 42, 49].

Reduced blood levels of copper and manganese can also have serious consequences for neonatal health (Table 2). It has been shown that deficiency of these trace elements plays an important role in the pathogenesis of neonatal diarrhea [5, 42], omphalitis [39], bovine respiratory disease [6, 28, 42] and sepsis [16] in calves. Analysis of copper and manganese content in the covering hair of the tail brush in newborn calves with IUGR revealed a 28.3% (P < 0.001) and 9.4% (P < 0.001) decrease in these trace elements respectively compared to offspring of cows with physiological pregnancy [6], indicating insufficient intake of these trace elements to the developing fetus with IUGR during the last 3 months of gestation [6, 14]. Thus, our results and the sources [6, 31, 42, 46, 49] indicate that to effectively correct copper and manganese deficiency in newborn IUGR calves, additional intake of these micronutrients to their mothers during pregnancy is necessary.

Recent studies have proved the role of zinc deficiency in pregnant women in the genesis of IUGR [24, 30, 31, 46]. Zinc deficiency impairs the secretion of sex steroids, glucocorticoids, somatomedin, increases the expression of proinflammatory cytokines, inhibits cell proliferation and fetal/embryonic growth [24, 35, 46]. The in vivo experiment showed that additional zinc administration to pregnant animals effectively protects them from lipopolysaccharide-induced IUGR [12]. A lower (by 10.7%, P < 0.001) zinc content was also found in the hair of newborn calves with IUGR compared with offspring of cows with physiological pregnancy [6]. However, in the current experiment, the decrease in blood zinc content in calves with IUGR was not statistically significant (Table 2). Probably, to find statistically significant differences in blood zinc content between newborn calves with IUGR and offspring of cows with physiological course of pregnancy, additional studies on a larger sample of animals are required.

Conclusion

Thus, the results of the study suggest that the mineral profile of blood in 1-day-old calves with IUGR in the anamnesis has characteristic features, namely

imbalance of macronutrients (increased level of potassium and magnesium and reduced - sodium in blood serum) and deficiency of essential trace elements (selenium, copper and manganese), indicating the presence of diselementosis. The latter in the absence of its adequate correction can lead to disruption of postnatal adaptation of calves, the development of metabolic and infectious diseases.

Conflict of interest. The authors declare that they have no conflict of interest.

References

1. Alekhin Yu.N., Zhukov M.S. Issues of Legal Regulation in Veterinary Medicine, 2019, no. 3, pp. 207-210. https://doi.org/10.17238/issn2072-6023.2019.3.207

2. Butko V.A., Lozovaya E.G., Mikhalev V.I. Bulletin of Veterinary Pharmacology, 2020, no. 2(11), pp. 177-190. https://doi.org/10.17238/issn2541-8203.2020.2.177

3. Kovalsky V.V. Geochemical Ecology. Moscow: Nauka, 1974, 300 p.

4. Nezhdanov A.G., Mikhalev V.I., Chusova G.G., Papin N.E., Chernitskiy A.E., Lozovaya E.G. Sel'skokhozyaistvennaya Biologiya, 2016, vol. 51, no. 2, pp. 230-237. https://doi.org/10.15389/agrobiology.2016.2.230rus

5. Samokhin V.T., Shushlebin V.I., Retsky M.I., Zolotarev A.I. Veterinariya, 2011, no. 12, pp. 11-13.

6. Safonov V.A., Mikhalev V.I, Chernitskiy A.E. Sel'skokhozyaistvennaya Biologiya, 2018, vol. 53, no. 4, pp. 831-841. https://doi.org/10.15389/agrobiolo-gy.2018.4.831rus

7. Chernitskiy A.E., Retsky M.I. Zolotarev A.I. Sel'skokhozyaistvennaya Biologiya, 2013, no. 4, pp. 99-104. https://doi.org/10.15389/agrobiology.2013.4.99rus

8. Chernitskiy A.E., Retsky M.I., Zolotarev A.I., Efanova L.I., Bratchenko E.V. Sel'skokhozyaistvennaya Biologiya, 2013, no. 6, pp. 94-99. https://doi. org/10.15389/agrobiology.2013.6.94rus

9. Azzam S.M., Kinder J.E., Nielsen M.K., Werth L.A., Gregory K.E., Cundiff L.V., Koch R.M. Environmental effects on neonatal mortality of beef calves. Journal of Animal Science, 1993, vol. 71, no. 2, pp. 282-290. https://doi. org/10.2527/1993.712282x

10. Bouda J., Jagos P. Biochemical and hematological reference values in calves and their significance for health control. Acta Veterinaria Brno, 1984, vol. 53, no. 3-4, pp. 137-142. https://doi.org/10.2754/avb198453030137

11. Buczinski S.M., Fecteau G., Lefebvre R.C., Smith L.C. Fetal well-being assessment in bovine near-term gestations: Current knowledge and future perspectives

arising from comparative medicine. The Canadian Veterinary Journal, 2007, vol. 48, no. 2, pp. 178-183.

12. Chen Y.H., Zhao M., Chen X., Zhang Y., Wang H., Huang Y.Y., Wang Z., Zhang Z.H., Zhang C., Xu D.X. Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect. The Journal of Immunology, 2012, vol. 183, no. 1, pp. 454-463. https://doi.org/10.4049/jimmunol.1103579

13. Chernitskiy A.E., Safonov V.A. Oxidative stress in newborn calves with intrauterine growth retardation is associated with a deficiency of selenium and copper. Animal Reproduction, 2018, vol. 15, no. S1, pp. 1053-1053. http://dx.doi. org/10.13140/RG.2.2.21457.38240

14. Chernitskiy A.E., Skogoreva T.S., Safonov V.A. Study of interrelations of the bioelement status of mother and fetus at cattle. Journal of Mechanics of Continua and Mathematical Sciences, 2020, no. S10, pp. 154-170. https://doi. org/10.26782/jmcms.spl.10/2020.06.00013

15. Chernitskiy A., Shabunin S., Safonov V. Calcium-magnesium ratio in the serum of newborn calves correlates with the level of their vitality. Advances in Animal Biosciences, 2019, vol. 10, no. 3, pp. 618-618. https://doi.org/10.1017/ S2040470019000037

16. Coskun A., Aydogdu U., Guzelbektes H., Sen I. The levels of trace elements and macrominerals in calves with sepsis. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2020, vol. 26, no. 3, pp. 351-355. https://doi.org/10.9775/ kvfd.2019.23187

17. Egli C.P., Blum J.W. Clinical, haematological, metabolic and endocrine traits during the first three months of life of suckling simmentaler calves held in a cow-calf operation. Journal of Veterinary Medicine: Series A, 1998, vol. 45, no. 1-10, pp. 99-118. https://doi.org/10.1111/j.1439-0442.1998.tb00806.x

18. Fanni D., Gerosa C., Nurchi V.M., Manchia M., Saba L., Coghe F., Crisponi G., Gibo Y., Van Eyken P., Fanos V., Faa G. The role of magnesium in pregnancy and in fetal programming of adult diseases. Biological Trace Element Research, 2021, vol. 199, no. 10, pp. 3647-3657. https://doi.org/10.1007/s12011-020-02513-0

19. Georgievskii V.I., Annenkov B.N., Samokhin V.T. Mineral Nutrition of Animals. London: Butterworths, 1982, 475 p.

20. Glover I.D., Barrett D., Reyher K. Little association between birth weight and health of preweaned dairy calves. Veterinary Record, 2019, vol. 184, no. 15, 477. https://doi.org/10.1136/vr. 105062

21. Greenwood P.L., Bell A.W. Developmental programming and growth of livestock tissues for meat production. Veterinary Clinics of North America: Food

Animal Practice, 2019, vol. 35, no. 2, pp. 303-319. https://doi.org/10.1016/). cvfa.2019.02.008

22. Greenwood P.L., Café L.M. Prenatal and pre-weaning growth and nutrition of cattle: long-term consequences for beef production. Animal, 2007, vol. 1, no. 9, pp. 1283-1296. https://doi.org/10.1017/S175173110700050X

23. Greenwood P.L., Café L.M., Hearnshaw H, Hennessy D.W. Consequences of nutrition and growth retardation early in life for growth and composition of cattle and eating quality of beef. Recent Advances in Animal Nutrition in Australia, 2005, vol. 15, pp. 183-195.

24. Grzeszczak K., Kwiatkowski S., Kosik-Bogacka D. The role of Fe, Zn, and Cu in pregnancy. Biomolecules, 2020, vol. 10, no. 8, 1176. https://doi.org/10.3390/ biom10081176

25. Hicks Z.M., Yates D.T. Going up inflame: Reviewing the underexplored role of inflammatory programming in stress-induced intrauterine growth restricted livestock. Frontiers in Animal Science, 2021, vol. 2, 761421. https://doi. org/10.3389/fanim.2021.761421

26. Hracsko Z., Orvos H., Novak Z., Pal A., Varga I.S. Evaluation of oxidative stress markers in neonates with intra-uterine growth retardation. Redox Report, 2008, vol. 13, no. 1, pp. 11-16. https://doi.org/10.1179/135100008X259097

27. Jawor P., Mee J.F., Stefaniak T. Role of infection and immunity in bovine perinatal mortality: Part 1. Causes and current diagnostic approaches. Animals, 2021, vol. 11, no. 7, 2102. https://doi.org/10.3390/ani11072102

28. Kalaeva E., Kalaev V., Chernitskiy A., Alhamed M., Safonov V. Incidence risk of bronchopneumonia in newborn calves associated with intrauterine disele-mentosis. Veterinary World, 2020, vol. 13, no. 5, pp. 987-995. https://doi. org/10.14202/vetworld.2020.987-995

29. Klinkon M., Jezek J. Values of blood variables in calves. In: A Bird's-Eye View of Veterinary Medicine [C. C. Perez-Marin (ed.)]. Rijeka: InTech, 2012, pp. 301-320.

30. Lewicka I., Kocylowski R., Grzesiak M., Gaj Z., Oszukowski P., Suliburska J. Selected trace elements concentrations in pregnancy and their possible role -Literature review. GinekologiaPolska, 2017, vol. 88, no. 9, pp. 509-514. https:// doi.org/10.5603/gp.a2017.0093

31. McKeating D.R., Fisher J.J., Perkins A.V. Elemental metabolomics and pregnancy outcomes. Nutrients, 2019, vol. 11, no. 1, 73. https://doi.org/10.3390/ nu11010073

32. Mehdi Y, Dufrasne I. Selenium in cattle: a review.Molecules, 2016, vol. 21, no. 4, 545. https://doi.org/10.3390/molecules21040545

33. Mikhalev V., Shabunin S., Safonov V., Chemitskiy A. Metabolic status of newborn calves with intrauterine growth retardation. Reproduction in Domestic Animals, 2018, vol. 53, no. S2, pp. 168-168. https://doi.org/10.1111/rda.13272

34. Mohri M., Sharifi K., Eidi S. Hematology and serum biochemistry of Holstein dairy calves: age related changes and comparison with blood composition in adults. Research in Veterinary Science, 2007, vol. 83, no. 1, pp. 30-39. https:// doi.org/10.1016/j.rvsc.2006.10.017

35. Neve J. Clinical implications of trace elements in endocrinology. Biological Trace Element Research, 1992, vol. 32, no. 1, pp. 173-185. https://doi. org/10.1007/BF02784602

36. Nezhdanov A., Shabunin S., Mikhalev V., Klimov N., Chernitskiy A. Endocrine and metabolic mechanisms of embryo and fetal intrauterine growth retardation in dairy cows. Turkish Journal of Veterinary and Animal Sciences, 2014, vol. 38, no. 6, pp. 675-680. https://doi.org/10.3906/vet-1405-12

37. Ogata Y., Nakao T., Takahashi K., Abe H., Misawa T., Urushiyama Y., Sakai J. Intrauterine growth retardation as a cause of perinatal mortality in Japanese black beef calves. Journal of Veterinary Medicine Series A, 1999, vol. 46, no. 6, pp. 327-334. https://doi.org/10.1046/j.1439-0442.1999.00221.x

38. Pavlata L., Pechova A., Dvorak R. Microelements in colostrum and blood of cows and their calves during colostral nutrition. Acta Veterinaria Brno, 2004, vol. 73, no. 4, pp. 421-429. https://doi.org/10.2754/avb200473040421

39. Retskii M.I., Shakhov A.G., Filatov N.V., Zolotarev A.I., Bliznetsova G.N., Mas'yanov Yu.N., Ermolova T.G. Role of metabolic status in development of omphalitis in neonatal calves. Russian Agricultural Sciences, 2007, vol. 33, no. 4, pp. 271-273. https://doi.org/10.3103/S1068367407040180

40. Safonov V. Comparison of LPO-AOS indices and biochemical composition of animal blood in biogeochemical provinces with different levels of selenium. Biological Trace Element Research, 2022, vol. 200, no. 5, pp. 2055-2061. https:// doi.org/10.1007/s12011-021-02825-9

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

41. Safonov V.A. Biological role of selenium and correction effects of its content in the organism of animals. Geochemistry International, 2018, vol. 56, no. 10, pp. 1046-1050. https://doi.org/10.1134/s0016702918100105

42. Safonov V., Chernitskiy A. Trace elements deficiency in dairy cows in the bio-geochemical province of the Republic of Belarus and biological effects of its correction. In: New Prospects in Environmental Geosciences and Hydrogeo-sciences [H. Chenchouni, H. I. Chamine, M. F. Khan, et al. (Eds.)]. CAJG 2019. Advances in Science, Technology & Innovation. Cham: Springer, 2022, pp. 185-187https://doi.org/10.1007/978-3-030-72543-3_41

43. Safonov V., Ermakov V., Danilova V., Yakimenko V. Relationship between blood superoxide dismutase activity and zinc, copper, glutathione and metal-lothioneines concentrations in calves. Biomath, 2021, vol. 10, no. 2, 2111247. https://doi.org/10.11145/j.biomath.2021.11.247

44. Shabunin S.V., Nezhdanov A.G., Mikhalev V.I., Lozovaya E.G., Chernitskiy A.E. Prognostic value of endogenous intoxication and oxidative stress indices in early embryogenesis in cows. Russian Agricultural Sciences, 2016, vol. 42, no. 1, pp. 101-104. https://doi.org/10.3103/S1068367416010183

45. Shabunin S., Mikhalev V., Nezhdanov A., Safonov V., Parshin P., Anipchenko P. PSVIII-16 Interferon-TAU in the pathogenesis and prevention of intrauterine growth restriction and embryonic death in dairy cows. Journal of Animal Science, 2020, vol. 98, no. S4, pp. 254-255. https://doi.org/10.1093/jas/skaa278.459

46. Shabunin S., Nezhdanov A., Mikhalev V., Lozovaya E., Chernitskiy A. Disele-mentosis as a risk factor of embryo loss in lactating cows. Turkish Journal of Veterinary and Animal Sciences, 2017, vol. 41, no. 4, pp. 453-459. http://dx.doi. org/10.3906/vet-1609-76

47. Steinhardt M., Gollnast I., Langanke M., Bünger U., Kutschke J. Klinischchemische blutwerte bei neugeborenen Kälbern. Tierärztliche Praxis, 1993, vol. 21, no. 4, pp. 295-301.

48. Tao S., Monteiro A.P., Thompson I.M., Hayen M.J., Dahl G.E. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. Journal of Dairy Science, 2012, vol. 95, no. 12, pp. 7128-7136. https://doi. org/10.3168/jds.2012-5697

49. Van Emon M., Sanford C., McCoski S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals, 2020, vol. 10, no. 12, 2404. https://doi.org/10.3390/ani10122404

50. Williams R.J. Tilden Lecture. The biochemistry of sodium, potassium, magnesium, and calcium. Quarterly Reviews. Chemical Society, 1970, vol. 24, no. 3, pp. 331-365. https://doi.org/10.1039/QR9702400331

51. Wu G., Bazer F. W., Wallace J.M., Spencer, T.E. Board-invited review: intrauterine growth retardation: implications for the animal sciences. Journal of Animal Science, 2006, vol. 84, no. 9, pp. 2316-2337. https://doi.org/10.2527/jas.2006-156

Список литературы

1. Алехин Ю.Н., Жуков М.С. Минеральный состав крови у новорожденных телят с разной массой тела при рождении // Вопросы нормативно-правового регулирования в ветеринарии. 2019. № 3. С. 207-210. https://doi. org/10.17238/issn2072-6023.2019.3.207

2. Бутко В.А., Лозовая Е.Г., Михалев В.И. Клинико-эхографические маркеры диагностики нарушений раннего эмбриогенеза у коров // Ветеринарный фармакологический вестник. 2020. № 2(11). С. 177-190. https://doi. org/10.17238/issn2541-8203.2020.2.177

3. Ковальский В.В. Геохимическая экология. Москва: Наука, 1974. 300 с.

4. Нежданов А.Г., Михалев В.И., Чусова Г.Г., Папин Н.Е., Черницкий А.Е., Лозовая Е.Г. Метаболический статус коров при задержке внутриутробного развития эмбриона и плода // Сельскохозяйственная биология. 2016. Т. 51, № 2. С. 230-237. https://doi.org/10.15389/agrobiology.2016.2.230rus

5. Самохин В.Т., Шушлебин В.И., Рецкий М.И., Золотарев А.И. Роль микроэлементного статуса в заболеваемости новорожденных телят колибакте-риозом // Ветеринария. 2011. № 12. С. 11-13.

6. Сафонов В.А., Михалев В.И., Черницкий А.Е. Антиоксидантный статус и функциональное состояние дыхательной системы у новорожденных телят с внутриутробной задержкой развития // Сельскохозяйственная биология. 2018. Т. 53. № 4. С. 831-841. https://doi.org/10.15389/ agrobiology. 2018.4.831rus

7. Черницкий А.Е., Рецкий М.И., Золотарев А.И. Функциональное становление дыхательной системы у новорожденных телят с разной жизнеспособностью // Сельскохозяйственная биология. 2013. № 4. С. 99-104. https://doi. org/10.15389/agrobiology. 2013.4.99rus

8. Черницкий А.Е., Рецкий М.И., Золотарев А.И., Ефанова Л.И., Братченко Э.В. Связь колострального иммунитета и биохимического статуса у новорожденных телят в первые дни жизни // Сельскохозяйственная биология. 2013. № 6. С. 94-99. https://doi.org/10.15389/agrobiology.2013.6.94rus

9. Azzam S.M., Kinder J.E., Nielsen M.K., Werth L.A., Gregory K.E., Cundiff L.V., Koch R.M. Environmental effects on neonatal mortality of beef calves // Journal of Animal Science. 1993. Vol. 71, no. 2. P. 282-290. https://doi. org/10.2527/1993.712282x

10. Bouda J., Jagos P. Biochemical and hematological reference values in calves and their significance for health control // Acta Veterinaria Brno. 1984. Vol. 53, no. 3-4. P. 137-142. https://doi.org/10.2754/avb198453030137

11. Buczinski S.M., Fecteau G., Lefebvre R.C., Smith L.C. Fetal well-being assessment in bovine near-term gestations: Current knowledge and future perspectives arising from comparative medicine // The Canadian Veterinary Journal. 2007. Vol. 48, no. 2. P. 178-183.

12. Chen Y.H., Zhao M., Chen X., Zhang Y., Wang H., Huang Y.Y., Wang Z., Zhang Z.H., Zhang C., Xu D.X. Zinc supplementation during pregnancy pro-

tects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect // The Journal of Immunology. 2012. Vol. 183, no. 1. P. 454-463. https://doi.org/10.4049/jimmunol.1103579

13. Chernitskiy A.E., Safonov V.A. Oxidative stress in newborn calves with intrauterine growth retardation is associated with a deficiency of selenium and copper // Animal Reproduction. 2018. Vol. 15, no. S1. P. 1053-1053. http://dx.doi. org/10.13140/RG.2.2.21457.38240

14. Chernitskiy A.E., Skogoreva T.S., Safonov V.A. Study of interrelations of the bioelement status of mother and fetus at cattle // Journal of Mechanics of Continua and Mathematical Sciences. 2020. No. S10. P. 154-170. https://doi. org/10.26782/jmcms.spl.10/2020.06.00013

15. Chernitskiy A., Shabunin S., Safonov V. Calcium-magnesium ratio in the serum of newborn calves correlates with the level of their vitality // Advances in Animal Biosciences. 2019. Vol. 10, no. 3. P. 618-618. https://doi.org/10.1017/ S2040470019000037

16. Coskun A., Aydogdu U., Guzelbektes H., Sen I. The levels of trace elements and macrominerals in calves with sepsis // Kafkas Universitesi Veteriner Fakultesi Dergisi. 2020. Vol. 26, no. 3. P. 351-355. https://doi.org/10.9775/kvfd.2019.23187

17. Egli C.P., Blum J.W. Clinical, haematological, metabolic and endocrine traits during the first three months of life of suckling simmentaler calves held in a cow-calf operation // Journal of Veterinary Medicine: Series A. 1998. Vol. 45, no. 1-10. P. 99-118. https://doi.org/10.1111/j.1439-0442.1998.tb00806.x

18. Fanni D., Gerosa C., Nurchi V.M., Manchia M., Saba L., Coghe F., Crisponi G., Gibo Y., Van Eyken P., Fanos V., Faa G. The role of magnesium in pregnancy and in fetal programming of adult diseases // Biological Trace Element Research. 2021. Vol. 199, no. 10. P. 3647-3657. https://doi.org/10.1007/s12011-020-02513-0

19. Georgievskii V.I., Annenkov B.N., Samokhin V.T. Mineral Nutrition ofAnimals. London: Butterworths, 1982. 475 p.

20. Glover I.D., Barrett D., Reyher K. Little association between birth weight and health of preweaned dairy calves // Veterinary Record. 2019. Vol. 184, no. 15, 477. https://doi.org/10.1136/vr. 105062

21. Greenwood P.L., Bell A.W. Developmental programming and growth of livestock tissues for meat production // Veterinary Clinics of North America: Food Animal Practice. 2019. Vol. 35, no. 2. P. 303-319. https://doi.org/10.1016/j. cvfa.2019.02.008

22. Greenwood P.L., Café L.M. Prenatal and pre-weaning growth and nutrition of cattle: long-term consequences for beef production // Animal. 2007. Vol. 1, no. 9. P. 1283-1296. https://doi.org/10.1017/S175173110700050X

23. Greenwood P.L., Café L.M., Heamshaw H, Hennessy D.W. Consequences of nutrition and growth retardation early in life for growth and composition of cattle and eating quality of beef // Recent Advances in Animal Nutrition in Australia. 2005. Vol. 15. P. 183-195.

24. Grzeszczak K., Kwiatkowski S., Kosik-Bogacka D. The role of Fe, Zn, and Cu in pregnancy // Biomolecules. 2020. Vol. 10, no. 8, 1176. https://doi.org/10.3390/ biom10081176

25. Hicks Z.M., Yates D.T. Going up inflame: Reviewing the underexplored role of inflammatory programming in stress-induced intrauterine growth restricted livestock // Frontiers in Animal Science. 2021. Vol. 2, 761421. https://doi. org/10.3389/fanim.2021.761421

26. Hracsko Z., Orvos H., Novak Z., Pal A., Varga I.S. Evaluation of oxidative stress markers in neonates with intra-uterine growth retardation // Redox Report. 2008. Vol. 13, no. 1. P. 11-16. https://doi.org/10.1179/135100008X259097

27. Jawor P., Mee J.F., Stefaniak T. Role of infection and immunity in bovine perinatal mortality: Part 1. Causes and current diagnostic approaches // Animals. 2021. Vol. 11, no. 7, 2102. https://doi.org/10.3390/ani11072102

28. Kalaeva E., Kalaev V., Chernitskiy A., Alhamed M., Safonov V. Incidence risk of bronchopneumonia in newborn calves associated with intrauterine disele-mentosis // Veterinary World. 2020. Vol. 13, no. 5. P. 987-995. https://doi. org/10.14202/vetworld.2020.987-995

29. Klinkon M., Jezek J. Values of blood variables in calves // A Bird's-Eye View of Veterinary Medicine [C. C. Perez-Marin (ed.)]. Rijeka: InTech, 2012. P. 301-320.

30. Lewicka I., Kocylowski R., Grzesiak M., Gaj Z., Oszukowski P., Suliburska J. Selected trace elements concentrations in pregnancy and their possible role -Literature review // Ginekologia Polska. 2017. Vol. 88, no. 9. P. 509-514. https:// doi.org/10.5603/gp.a2017.0093

31. McKeating D.R., Fisher J.J., Perkins A.V. Elemental metabolomics and pregnancy outcomes // Nutrients. 2019. Vol. 11, no. 1, 73. https://doi.org/10.3390/nu11010073

32. Mehdi Y, Dufrasne I. Selenium in cattle: a review // Molecules. 2016. Vol. 21, no. 4, 545. https://doi.org/10.3390/molecules21040545

33. Mikhalev V., Shabunin S., Safonov V., Chernitskiy A. Metabolic status of newborn calves with intrauterine growth retardation // Reproduction in Domestic Animals. 2018. Vol. 53, no. S2. P. 168-168. https://doi.org/10.1111/rda.13272

34. Mohri M., Sharifi K., Eidi S. Hematology and serum biochemistry of Holstein dairy calves: age related changes and comparison with blood composition in adults // Research in Veterinary Science. 2007. Vol. 83, no. 1. P. 30-39. https:// doi.org/10.1016/j.rvsc.2006.10.017

3 5. Neve J. Clinical implications of trace elements in endocrinology // Biological Trace Element Research. 1992. Vol. 32, no. 1. P. 173-185. https://doi.org/10.1007/BF02784602

36. Nezhdanov A., Shabunin S., Mikhalev V., Klimov N., Chernitskiy A. Endocrine and metabolic mechanisms of embryo and fetal intrauterine growth retardation in dairy cows // Turkish Journal of Veterinary and Animal Sciences. 2014. Vol. 38, no. 6. P. 675-680. https://doi.org/10.3906/vet-1405-12

37. Ogata Y., Nakao T., Takahashi K., Abe H., Misawa T., Urushiyama Y., Sakai J. Intrauterine growth retardation as a cause of perinatal mortality in Japanese black beef calves // Journal of Veterinary Medicine Series A. 1999. Vol. 46, no. 6. P. 327-334. https://doi.org/10.1046/j.1439-0442.1999.00221.x

38. Pavlata L., Pechova A., Dvorak R. Microelements in colostrum and blood of cows and their calves during colostral nutrition // Acta Veterinaria Brno. 2004, Vol. 73, no. 4. P. 421-429. https://doi.org/10.2754/avb200473040421

39. Retskii M.I., Shakhov A.G., Filatov N.V., Zolotarev A.I., Bliznetsova G.N., Mas'yanov Yu.N., Ermolova T.G. Role of metabolic status in development of omphalitis in neonatal calves // Russian Agricultural Sciences. 2007. Vol. 33, no. 4. P. 271-273. https://doi.org/10.3103/S1068367407040180

40. Safonov V. Comparison of LPO-AOS indices and biochemical composition of animal blood in biogeochemical provinces with different levels of selenium // Biological Trace Element Research. 2022. Vol. 200, no. 5. P. 2055-2061. https:// doi.org/10.1007/s12011-021-02825-9

41. Safonov V.A. Biological role of selenium and correction effects of its content in the organism of animals // Geochemistry International. 2018. Vol. 56, no. 10. P. 1046-1050. https://doi.org/10.1134/s0016702918100105

42. Safonov V., Chernitskiy A. Trace elements deficiency in dairy cows in the bio-geochemical province of the Republic of Belarus and biological effects of its correction // New Prospects in Environmental Geosciences and Hydrogeosci-ences [H. Chenchouni, H. I. Chamine, M. F. Khan, et al. (Eds.)]. CAJG 2019. Advances in Science, Technology & Innovation. Cham: Springer, 2022. P. 185-187https://doi.org/10.1007/978-3-030-72543-3_41

43. Safonov V., Ermakov V., Danilova V., Yakimenko V. Relationship between blood superoxide dismutase activity and zinc, copper, glutathione and metallo-thioneines concentrations in calves // Biomath. 2021. Vol. 10, no. 2, 2111247. https://doi.org/10.11145/j.biomath.2021.11.247

44. Shabunin S.V., Nezhdanov A.G., Mikhalev V.I., Lozovaya E.G., Chernitskiy A.E. Prognostic value of endogenous intoxication and oxidative stress indices in early embryogenesis in cows // Russian Agricultural Sciences. 2016. Vol. 42, no. 1. P. 101-104. https://doi.org/10.3103/S1068367416010183

45. Shabunin S., Mikhalev V., Nezhdanov A., Safonov V., Parshin P., Anipchenko P. PSVIII-16 Interferon-TAU in the pathogenesis and prevention of intrauterine growth restriction and embryonic death in dairy cows // Journal of Animal Science. 2020. Vol. 98, no. S4. P. 254-255. https://doi.org/10.1093/jas/skaa278.459

46. Shabunin S., Nezhdanov A., Mikhalev V., Lozovaya E., Chernitskiy A. Disele-mentosis as a risk factor of embryo loss in lactating cows // Turkish Journal of Veterinary and Animal Sciences. 2017. Vol. 41, no. 4. P. 453-459. http://dx.doi. org/10.3906/vet-1609-76

47. Steinhardt M., Gollnast I., Langanke M., Bünger U., Kutschke J. Klinischchemische blutwerte bei neugeborenen Kälbern // Tierärztliche Praxis. 1993. Vol. 21, no. 4. P. 295-301.

48. Tao S., Monteiro A.P., Thompson I.M., Hayen M.J., Dahl G.E. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves // Journal of Dairy Science. 2012. Vol. 95, no. 12. P. 7128-7136. https://doi. org/10.3168/jds.2012-5697

49. Van Emon M., Sanford C., McCoski S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health // Animals. 2020. Vol. 10, no. 12, 2404. https://doi.org/10.3390/ani10122404

50. Williams R.J. Tilden Lecture. The biochemistry of sodium, potassium, magnesium, and calcium // Quarterly Reviews. Chemical Society. 1970. Vol. 24, no. 3. P. 331-365. https://doi.org/10.1039/QR9702400331

51. Wu G., Bazer F.W., Wallace J.M., Spencer, T.E. Board-invited review: intra-uterine growth retardation: implications for the animal sciences // Journal of Animal Science. 2006. Vol. 84, no. 9. P. 2316-2337. https://doi.org/10.2527/ jas.2006-156

DATA ABOUT THE AUTHORS

Anton E. Chernitskiy, Senior Researcher of the Sector of Cattle Reproductive Organs Diseases of the Department of Experimental Therapy, Doctor of Biological Sciences

All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy

114b, Lomonosova Str., Voronezh, 394087, Russian Federation

[email protected]

SPIN-code: 3776-3502

ORCID: https://orcid.org/0000-0001-8953-687X ResearcherID: C-6746-2013 Scopus Author ID: 56410871400

Tatiana S. Ermilova, Assistant of the Department of Veterinary Medicine

Astrakhan State University name of V.N. Tatishcheva 20a, Tatischev Str., Astrakhan, 414056, Russian Federation [email protected] SPIN-code: 6712-6866

ORCID: https://orcid.org/0000-0002-8251-8545

Emil A.O. Salimzade, Postgraduate Student of the Department of Veterinary Medicine

Astrakhan State University name of V.N. Tatishcheva 20a, Tatischev Str., Astrakhan, 414056, Russian Federation [email protected] SPIN-code: 1491-4339

ORCID: https://orcid.org/0000-0002-4389-2892

Vladimir A. Safonov, Head of the Joint Research Laboratory of Fundamental and Applied Problems of Biogeochemistry and Veterinary Medicine of the Volga-Caspian Region of Astrakhan State University name of V.N. Tatishcheva and Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Doctor of Biological Sciences

Astrakhan State University name of V.N. Tatishcheva 20a, Tatischev Str., Astrakhan, 414056, Russian Federation [email protected] SPIN-code: 5110-8671

ORCID: https://orcid.org/0000-0002-5040-6178 ResearcherID: L-7174-2016 Scopus Author ID: 57198771314

ДАННЫЕ ОБ АВТОРАХ Черницкий Антон Евгеньевич, старший научный сотрудник сектора болезней органов воспроизводства крупного рогатого скота отдела экспериментальной терапии, доктор биологических наук Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии»

ул. Ломоносова, 114б, г. Воронеж, 394087, Российская Федерация [email protected]

Ермилова Татьяна Сергеевна, ассистент кафедры ветеринарной медицины

Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В.Н. Татищева»

ул. Татищева, 20а, г. Астрахань, 414056, Российская Федерация [email protected]

Салимзаде Эмиль Афлатун оглы, аспирант кафедры ветеринарной медицины

Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В.Н. Татищева»

ул. Татищева, 20а, г. Астрахань, 414056, Российская Федерация [email protected]

Сафонов Владимир Александрович, заведующий Совместной научно-исследовательской лабораторией фундаментальных и прикладных проблем биогеохимии и ветеринарной медицины Вол-го-Каспийского региона АГУ им. В.Н. Татищева и Института геохимии и аналитической химии им. В.И. Вернадского Российской академии наук, доктор биологических наук

Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В. Н. Татищева»

ул. Татищева, 20а, г. Астрахань, 414056, Российская Федерация [email protected]

Поступила 09.04.2022

После рецензирования 25.04.2022

Принята 27.04.2022

Received 09.04.2022 Revised 25.04.2022 Accepted 27.04.2022

i Надоели баннеры? Вы всегда можете отключить рекламу.