УДК 517.51
АПРИОРНАЯ ОГРАНИЧЕННОСТЬ РЕШЕНИЙ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ ВКЛЮЧЕНИЙ С ПОЛУНЕПРЕРЫВНОЙ СВЕРХУ ПРАВОЙ ЧАСТЬЮ И МНОГОЗНАЧНЫМИ ИМПУЛЬСНЫМИ ВОЗДЕЙСТВИЯМИ
(с) А.И. Булгаков, Е.В. Малютина, О.В. Филиппова
Ключевые слова: функционально-дифференциальное включение; многозначные импульсные воздействия; априорная ограниченность.
Для задачи Коши функционально-дифференциального включения с многозначными импульсными воздействиями сформулированы условия компактности и связности множества решений.
Обозначим сотр[1Кп] (сопп[Еп]) — множество всех непустых компактов (связных компактов) пространства П£п. Пусть Ы С [а,Ь] — измеримое по Лебегу множество; Ъп(и) — пространство суммируемых по Лебегу функций х : Ы —» с нормой НяЦдоод =
и
Г2(Ьп[а, Ь]) — множество всех непустых выпуклых ограниченных замкнутых подмножеств пространства Ьп[а, &]; Г2(С [а, 6]) — множество непустых выпуклых компактов пространства С [а, Ь]. Обозначим соА — выпуклая замкнутая оболочка множества А.
Пусть tk £ [а, 6] (а < < ... < Ьт < Ь) — конечный набор точек. Обозначим через
С [а, 6] множество всех непрерывных на каждом из интервалов [а, £].], • • •»Ш1 Ь]
ограниченных функций х: [а, Ь] -» Кп, имеющих пределы справа в точках к = 1,2,..., т,
с нормой 1И1сп[аб] = йиР{кМ1 : * £ [а>4}- Если г е (а, Ь], то С [а, г] —это пространство
функций х : [а, г] —> Мп, являющихся сужениями на отрезок [а, г] элементов из С [а, 6] с
нормой |М1сп[а,т] = 3иР{1Ж№1 : 1 е [а’Т1) •
Рассмотрим задачу:
х е Ф(ж), (1)
Л(х^к)) е 1к{х(гк)), к = 1,2,... ,тп, (2)
х(а) = х0, (3)
%
где отображение Ф : С [а, Ь] —>• П(Ьп[а, 6]) полунепрерывно сверху по Хаусдорфу и для каждого ограниченного множества и С С [а, 6] образ Ф(£/) ограничен суммируемой функцией. Отображения 1к : -> сотр[П£п], к = 1,2, ...,тп полунепрерывны сверху по Хаусдорфу,
А(х(гк)) = х(гк + 0) - к = 1,2,..., т.
Определение 1. Решением задачи (1)-(3) называется функция х £ С [а, 6], для которой существует такое д Е Ф(я), что при всех Ь Е [а, 6] имеет место представление
где Д(ж(**)) в 1к{х{Ьк)), к = 1,2,...,тп.
Предположим, что оператор Ф : С [а, Ь] -» П(Ьп[а, 6]) вольтерров по А.Н. Тихонову
Определение 2. Функция х € Сп[а, т] является решением задачи (1)-(3) на отрезке [а, т], т€(а,6], если существует такое д € (Ф(Ут(а:)))|т, что функция х :[а, т]—> Мп представима в виде
где отображение УТ : Сп[а,т] -¥ Сп[а,6] определено равенством (5), (Ф(Ут(з:)))|т - множество сужений функций из множества Ф(У,-(я)) на отрезок [а, т] и Д(а;(^)) Е 1к{х(1 к)), € [а, г].
Определение 3. Решение х : [а, с) —>• Кп задачи (1)-(3) называется непродолжа-емым, если не существует такого решения у задачи (1)-(3) на [а, т], (те (с, 6], если с < Ь и т = 6, если с = 6), что для любого £ (Е [а,с) выполнено равенство ж(£) = у{Ь).
Решение задачи (1)-(3) считается непродолжаемым.
Пусть т Е (а, Ь]. Обозначим через Н(хо,т) множество решений задачи (1)-(3) на отрезке [а, т].
Определим оператор А : Ьп[а, 6] -> Сп[а, 6], который имеет вид
где Д(х(^)) е /*(ж№ь)), & = 1,2,...,т.
Лемма 1. Пусть последовательность ж* € С^[а, Ь], г = 1,2,... и пусть Х{ —> х по норме пространства Сп[а, Ь) при г —> оо. Тогда х Е Сп[а,Ь] и для любого /г = 1,2,..., га
Определение 4. Множество всех локальных решений задачи (1)-(3) называется априорно ограниченным, если найдется такое число г > 0, что для всякого т € (а, 6] не существует решения у Е Н(хо,т) задачи (1)-(3) на [а,т], для которого выполняется неравенство 1М1сп[0)т] > г'
Из теоремы Какутани (см. [3]) вытекает следующее утверждение.
Теорема 1. Найдется такое т 6 (а, 6], что решение задачи (1)-(3) существует на отрезке [а, т].
если £ € [а, т]; если £ Е (т, 6].
(5)
[а,т]
(6)
а
(7)
а
Рассмотрим оператор 21: Сп[а,6] -» Г2(Сп[а, 6]), определенный равенством
т
(8)
к=1
Нт Жг(^ + 0) = ж(^ 4- о).
Теорема 2. Пусть множество всех локальных обобщенных решений задачи (1)-(3)
ет такое г > 0, что для каждых т £ (а, 6] и у € Н(хо,т) выполняется неравенство
Теорема 3. Если множество всех локальных решений задачи (1)-(3) априорно ограничено, то существует такой выпуклый компакт К С Сп[а, 6], что Н(хо,Ь) С К и 21 (К) С К, где отображение 21 : Сп[а, Ь] —> Г2(Сп[а, Ь]) определено равенством (8).
Доказательство. Покажем, что найдется такой выпуклый компакт К С Сп[а, Ь], для которого имеют место вложения
Так как : Еп —> сотр[Кп], к = 1,2, то множество значений скачков в точках
6 [а, 6], к = 1,2,...,т ограничено. Пусть
где \\11С(у^1С))\\ = {тах\х\,хЕ1к{у^к))}. Рассмотрим непрерывное отображение Р:МП->ЕП, заданное равенством
где отображение Р: И£п —> Еп имеет вид (10). Далее покажем что отображение V: С71 [а, 6] -* Сп[а, 6], заданное равенствами (10), (11), непрерывно на множестве Сп[а,Ь]. Действительно, пусть последовательность ^(Е Сп[а,6]) -> г в пространстве Сп[а,Ь\ при г —> оо. Покажем, что 'Рг{ -> Тг в пространстве Сп[а, 6] при % —> оо. Предположим противное. Это означает, что существует такое е > 0 и такие подпоследовательности € С71 [а, 6] и ^ € [о,6], j = 1,2,..., для которых для любого 3 = 1,2,... выполняются неравенства
Пусть £о ^ [а, Ь] — предельная точка подпоследовательности ^ е [«,4, 3 = 1,2,.... Не уменьшая общности, будем считать, что 4*. -> £о при j ->• оо. Пусть £о Ф Л = 1,2,
Тогда выполняется равенство
то, переходя в этом неравенстве к пределу при з -¥ оо и учитывая непрерывность отображения Р : Еп —> Кп, определенного равенством (10), а также равенство (13), получим
априорно ограничено. Тогда для любого т (Е (а, 6] множество Н(хо,т) ф 0 и существу-
Н(х0,Ь)сК, 21(ДГ) С К
I = 8ир|||4(у(<к))|| : у 6 Н(х0,Ь), 4* € [а,Ь], к = 1,2,...,™},
(9)
(10)
(П)
1ПМЧ))--Р(г(Ч))1 >£•
(12)
Шп г^(г;1) = г(«0).
(13)
]—ЮО
Так как
|Р(^.((,,)) - Р(г(^))| < \Р(щ(и,)) ~ Р(г(Ш + |Р(г(4о)) - Р(г(*у))|,
Нт |Р(^(и1)) - Р{г(и1))\ = 0,
(14)
]-*■ ОО
но это противоречит оценкам (12).
Пусть теперь £0 равно одной из точек к = 1,2,т. Тогда, если < £0, .7 = 1,2,..., то равенство (13) выполняется, из которого следует равенство (14), что также противоречит оценкам (12).
Пусть теперь £о < £*,•> 3 = 1>2,... . В силу того, что 2г- —»■ г в пространстве Сп[а, Ь] при г —> оо, то, согласно лемме 1, выполняется равенство
Ига гй(и.) = г(<0 + 0),
3—юо 3 3
из которого следует равенство (13). Это противоречит оценкам (12). Таким образом, отображение V : Сп[а, Ь] —> Сп[а,Ь], имеющее вид (11), непрерывно в пространстве Сп[а,Ь].
Рассмотрим на множестве Сп[а, 6] включение
х€ЩГ{х)), (15)
где 21: Сп[а, 6] —> 1)(Сп[а, 6]) определяется формулой (8).
Так как оператор V : Сп[а,Ь] —> Сп[а,Ь], определенный равенствами (10), (11), непрерывен, отображение Ф : Сп[а,Ь] —>> Г^(Ьп[а, 6]), полунепрерывно сверху по Хаусдорфу, то суперпозиция (ФТ) : Сп[а, Ь] -> Г2(Ьп[а,6]) полунепрерывна сверху по Хаусдорфу.
Так как оператор V : Сп[а, 6] —► Сп[а, 6] ограничен, то образ Ф(Т(Сп[а, 6])) ограничен суммируемой функцией и множество значений скачков ограничено, это означает, что 21(‘Р(Сп[а, &])) — предкомпактное множество пространства Сп[а, Ь]. Тогда, согласно теореме Какутани (см. [3]), произведение (217^) имеет неподвижную точку х, эта неподвижная точка — есть решение включения (15). Для решения задачи (15) из условия продолжаемости и априорной ограниченности локальных решений следует оценка ||я|1сп[аб] < г + т/,
поэтому х — неподвижная точка отображения 2(: Сп[а,Ь\ —> Г2(Сп[а,6]) является решением задачи (1)-(3). Из этого вытекает, что множество решений включения (15) совпадает с множеством решений задачи (1)-(3).
Так как 21('Р(Сп[а,&])) — предкомпактное множество пространства Сп|а,6], то со21(Р(Сп[а,6])) — выпуклый компакт пространства Сп[а, 6]. Пусть К = со 21(Р(С"[о, 6])). Тогда из определения множества К следует, что 21 (К) С К , Н(хо,Ь) С К. Теорема доказала.
Из теоремы 3 и [6] вытекает теорема.
Теорема 4. Пусть 7* : Мп —» сопп[Мп], к = 1,2, ...,т, и множество всех локальных решений задачи (1)-(3) априорно ограничено. Тогда Н(хо,Ь) — связный компакт пространства Сп[а, 6].
Полученные результаты дополняют и обобщают результаты, полученные в работах [5] - [8].
ЛИТЕРАТУРА
1. Тихонов А. Н. Функциональные уравнения типа Вольтерра и их приложения к некоторым вопросам математической физики //Бюллетень Московского университета. Секция А. 1938. Т. 68. № 4.
2. Булгаков А. И. Непрерывные ветви многозначных отображений и интегральные включения с невыпуклыми образами и их приложения // Дифференц. уравнения. 1992. Т. 28. № 3. С. 371-379.
3. Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: Наука, 1977. 742 с.
4. Булгаков А.И., Ляпин Л.Н. Об интегральном включении с функциональным оператором // Дифференц. уравнения, 1979. Т. 15. № 5. С. 876-884.
5. Самойленко А. М., Перестюк Н.А. Дифференциальные уравнения с импульсными воздействиями. К.: Вища шк. 1987.
6. Булгаков А.И., Беляева О.П., Мачина А.Н. Функционально-дифференциальные включения с многозначным отображением, не обладающим свойством выпуклости по переключению значений // Вестн. Удм. ун-та. Матем., механика. 2005. JV*» 1. С. 3-20.
7. Булгаков А.И., Корчагина Е.В., Филиппова О.В. Функционально-дифференциальные включения с импульсными воздействиями. Часть 2 // Вестник ТГУ. Сер.: Естеств. и техн. науки. Тамбов, 2009. Т. 14. Вып. 6. С. 1262-1267.
8. Булгаков А.И., Корчагина Е.В., Филиппова О.В. Функционально-дифференциальные включения с импульсными воздействиями. Часть 6 // Вестник ТГУ. Сер.: Естеств. и техн. науки. Тамбов, 2009. Т. 14. Вып. 6. С. 1290-1296.
БЛАГОДАРНОСТИ: Работа выполнена при финансовой поддержке Российского Фонда Фундаментальных Исследований (гранты 09-01-97503, 11-01-00626, 11-01-00645), Министерства образования и науки РФ (АВЦП "Развитие научного потенциала высшей школы (2009-2011 годы) проект № 2.1.1/9359; ФЦП "Научные и научно-педагогические кадры инновационной России на 2009-2013 годы госконтракты П688, 14.740.11.0682, 14.740.11.0349; темплан 1.8.11).
Поступила в редакцию 10 ноября 2010 г.
Bulgakov A.I., Malyutina E.V., Filippova O.V. A-priori boundedness of solutions to functional-differential inclusions with upper semicontinuous right-hand side and with multivalued impulses. For the Cauchy problem for a functional-differential inclusion with multivalued impulses the conditions of compactness and connectness of the solution set are formulated.
Keywords: functional-differential inclusion; multivalued impulses, a-priori boundedness.
Булгаков Александр Иванович, Тамбовский государственный университет имени Г.Р. Державина, г. Тамбов, доктор физико-математических наук, профессор, заведующий кафедрой алгебры и геометрии, e-mail: [email protected]
Малютина Елена Валерьевна, Тамбовский государственный университет имени Г.Р. Державина, г. Тамбов, аспирант кафедры алгебры и геометрии, e-mail: [email protected]
Филиппова Ольга Викторовна, Тамбовский государственный университет имени Г.Р. Державина, г. Тамбов, ассистент кафедры алгебры и геометрии, e-mail: [email protected]
УДК 517.911, 517.968
НЕКОТОРЫЕ СВОЙСТВА УПРАВЛЯЕМОЙ ИМПУЛЬСНОЙ СИСТЕМЫ С ФАЗОВЫМИ ОГРАНИЧЕНИЯМИ ПО УПРАВЛЕНИЮ И ЗАПАЗДЫВАНИЕМ
%
© А.И. Булгаков, Е.В. Малютина, О.В. Филиппова
Ключевые слова: управляемая импульсная система с фазовыми ограничениями по управлению, априорная ограниченность, дифференциальное включение с импульсными воздействиями.
Для управляемых импульсных систем с фазовыми ограничениями по управлению и запаздыванием рассмотрены вопросы продолжаемости допустимых пар. Получены оценки допустимых траекторий, аналогичные оценкам В.И. Благодатских, А.Ф. Филиппова. Сформулировано определение допустимой квазитраектории. Получены достаточные условия выполнения принципа плотности для рассматриваемой системы.