Д. Ш. Жусупова
Мунай евдеу енеркэсштершде курылгыларды колдану аркылы экологиялык
мэселелерд1 шешу
С. ТораЙFыров атындаFы Павлодар мемлекетлк университетi, Павлодар к.
Материал 12.12.16 баспаFа tyctí.
D. Sh. Zhussupova
Environmental management during the plant operation at the oil refinery
S. Toraighyrov Pavlodar State University, Pavlodar.
Material received on 12.12.16.
Мунай вцдеу внеркэсттертде цурылгыларды цолдану арцылы экологиялъщ мдселелердi шешу «жасыл» экономика тужырымдамасын талаптарына сэйкес келетт жабдыцты цуруды усынады.
Environmental management during the plant operation at the oil refinery assumes the installation of the equipment, correspondent to the green economy concept requirements.
UDC 378.14.014.13:004.9
A. Zh. Kasenov1, L. D. Zhanbulatova2, D. A. Aidarkhanov2
Candidate of engineering sciences, associate professor; 2,3students,
S. Toraighyrov Pavlodar State University, Pavlodar
e-mail: [email protected]; [email protected]; [email protected]
APPLICATIONS IN ENGINEERING
The article presents a review and comparative analysis of the possibilities ofsoftware applications (Kompas, APM, T-Flex, AutoCAD, AnSYS, Comsol, Simufac, Adams, Nastran) by the following characteristics: the presence ofmethods for basic and advanced courses; the presence of Russian interface; the complexity of the interface development; the completeness and quality of the referral system; the availability of training examples and video tutorials; the provision of additional literature on the program; the complexity of the play models, the ability to simultaneously work with multiple files; the availability of the integration between the individual modules of the program; the productivity of the programs; price and others. There is evaluated the feasibility of using these software products in higher education institutions for the training of highly competitive, professionally competent specialists that are in demand on the modern work market.
Keywords: CAD, Compass, arm, T-Flex, AutoCAD, AnSYS, Comsol, Simufac, Adams, Nastran, simulation, applications.
INTRODUCTION
The introduction of information technologies in the educational process is
accompanied by significant changes in the methodology of teaching graphic disciplines.
In accordance with the requirements of state educational standards graduates must not
only own a set of professional knowledge, abilities, skills and competences but also to be ready to development of the new knowledge providing professional competitiveness. Active introduction of information technology has increased the demand for highly qualified personnel with skills to work in computer-aided design systems.
Teaching in higher education is directed to the production of the most competitive professionals and one of the important component in the preparation of engineering is to teach computer-aided design systems. Competitiveness in higher education is achieved by the fact that the learners are given the choice in addition to the traditional method of design and project analysis they will have the ability to perform tasks in the computer-aided design systems included in such disciplines as computer graphics, designing of mechanisms and machines, designing and the production of metal-cutting tools, etc.
MAIN PART
One of the conditions of work in enterprises is the knowledge of one or more CAD (computer-aided design). One of the conditions of work in enterprises is the knowledge of one or more computer-aided design. The introduction to the educational process of new technology has improved it more intense and interesting for the student and greatly facilitated the creation of design and technological projects. In learning, how to work in CAD (computer-aided design system) Technical Department of chose the most suitable for performing engineering operations software. This list includes programs of a native production: «Compass», «APM», «T-Flex», and programs of foreign production «AutoCAD» «AnSYS», «Comsol», «Simufac», «Adams», «Nastran». All of these programs are used to perform a variety of engineering problems and correspond to international standards. Compass» is a family of computer-aided design systems with the possibility of design project and design documentation according «design documentation system» and the «system of design documents for construction» [3-4, 9]. Developed by the company «ASKON» specializes in engineering, instrumentation, construction, and it is designed to build volumetric, associative models and full units' assemblies. Compass is a perfect solution for automatic drawing creation process. Extremely slow development of the system «Compass» at times makes it absolutely useless to study, especially if there is a such a competitor, like T-Flex [10].
Flex is a professional designing program that combines powerful parametric capabilities in 2D and 3D modeling. T-FLEX CAD has a special performance and stability and offers innovative tools for the creation of specialized computer-aided design in the field of piping, steel structures, electrical circuits, construction and many other structures. The system is aimed at professionals in the field of designing and contains all the necessary tools for the calculation, design and manufacture of structures of all levels of difficulty [10, 19].
AutoCAD - two- and three-dimensional computer-aided design and drafting, developed by Autodesk. AutoCAD and customized applications based on it are widely used in engineering, construction, architecture and other industries. Widespread AutoCAD in the world is due not least advanced development tools and adaptations that allow you to customize the system to their specific needs and significantly extend the functionality of the base system [13].
ANSYS - the universal software system for finite element analysis, the existing and evolving over the past 30 years, is the most popular specialist for CAE systems. ANSYS is used to solve linear and nonlinear, stationary and non-stationary spatial problems of solid mechanics and mechanics of structures, including non-stationary geometrically and physically nonlinear problems of contact interaction of structural elements, problems of fluid and gas mechanics, heat transfer and heat transfer, electrodynamics, acoustics, and mechanics related fields. Modeling and analysis in some areas of the industry to avoid costly and time-consuming type of «design - manufacture - test» development cycles [14].
Comsol is designed to simulate any physical system that allows you to simulate complex electrical, mechanical, hydrodynamic and chemical phenomena. Additional modules extend the possibility of multi-physical simulation platform, providing simulation in specific areas of science and technology, and integration with third-party software packages, and their functions [15].
Simufac - is computer modeling system to calculate the metal deformation processes in the process of forging and forging in the design of the die tooling. It allows you to optimize the temperature and speed, taking into account the stress-strain state, the terms of processes, designing optimal technology. This contributes to the adequacy of the models of the technological process, as well as a precise description of rheological behavior of metal under strain [16].
Adams is the most widely used multibody dynamics and motion analysis software in the world. Adams helps engineers to study the dynamics of moving parts, how loads and forces are distributed throughout mechanical systems, and to improve and optimize the performance of their products. Adams multibody dynamics software enables engineers to easily create and test virtual prototypes of mechanical systems in a fraction of the time and cost required for physical build and test. Unlike most CAD embedded tools, Adams incorporates real physics by simultaneously solving equations for kinematics, statics, quasi-statics, and dynamics. Utilizing multibody dynamics solution technology, Adams also runs nonlinear dynamics in a tiny fraction of the time required by FEA solutions. Loads and forces computed by Adams simulations improve the accuracy of FEA by providing better assessment of how they vary throughout a full range of motion and operating environments [17].
Nastran provides a complete set of calculations, including the calculation of the stress - strain state of natural frequencies and mode shapes, stability analysis, the solution of heat transfer problems, the study of steady and transient. Along with the calculation of structures it can be used to optimize the project. Optimization can be carried out for the static problems of stability, steady and unsteady dynamic transients, natural frequencies and mode shapes. Nastran also includes a unique feature to optimize the design with unlimited changes its geometrical shape [18].
Compare the advantages and disadvantages of some of the applications are given in Table 1.
Table 1 - comparison of advantages and disadvantages of programs
Advantages Disadvantages
Kompas 1 A clear and intuitive interface 2 inexpensive. 3 Completely Russified The very slow development of the system
AutoCAD Availability for the creation on its base of specialized powerful computational and graphics packages The complexity of binding information from the database to the graphic objects
T-Flex 1 Unique parameterization tool 2 The speed of the program 3 Flexible designing 4 The solution of complex problems 5 Openness 6 Wide set of additional features 7 The use of existing skills and experience 1 Limited capacity calculation: the lack of aerodynamics and hydrodynamics 2 There is no possibility of ergonomic calculation 3 Weak possibility of creating a photorealistic image 4 No trace tools and backup volumes [19]
AnSYS 1 Convenient and flexible user interface 2 The opportunities of the preprocessor 3 It has a powerful tool for automation of numerical analysis - language APDL Increased demands on the hardware for a reasonable rate of direct rendering model. This fact significantly limits the possibility of using two-dimensional and especially three-dimensional AnSYS models to optimized procedures that require multiple calling patterns at each iteration step
Presented applications that are used in the educational process, allow to simulate various engineering and technological projects, without resorting to costly and long-term laboratory work that allows a short time to give a teaching presentation of its industrial processes in the field of education [20].
Despite the great possibilities of modern CAD systems, the decisive role in the design belongs to the trainee and skills on the submitted application programs are one of the main challenges for higher education institutions that are interested in training highly qualified specialists and confirm the competitiveness of its institutions with the purpose to give their students practical knowledge for their further application in enterprises.
CONCLUSION
Applications are an integral part of the professional activity of engineers, so their development will take some time. Due to limited classroom curriculum, it is advisable phased study software products, starting with the widely used in all sectors and to special professional applications. Thus, by comparing some programs, modern CAD systems meet all the requirements of the education system, and their use in the educational process is appropriate, and their use in the preparation of engineers contributes to a better interaction of students in a single information space that allows you to prepare highly competitive, professionally competent specialists demanded in today's job market.
REFERENCES
1 Storchak, N. Application of the system KOMPAS-3D in teaching engineering discipline // Journal «CAD and graphics», № 10. - M., 2013. - P. 88-89.
2 Klesheva, N. A., Tarasova, I. M. Application of graph theory in the process of mathematical preparation of bachelors' system // International journal of applied and fundamental research, 2015. - № 1. - P. 130-135.
3 Gorelov, V. N., Kokorev, I. A. Principy postroenia 3D modelei korpysnih detalei v sisteme Kompas 3D // MTO-13, 18 October 2013. - Vol. 1. - P. 321-324.
4 Dudak, N. S., Kasenov, A. Zh., Mukanov, R. B. Оspantaev, А. Istai, ^ B., Miller, S. А., Аhmetova, А. А. Strength Express finite element analysis // Materialy Mezhdunarodnoy nauchnoy konferentsii molodykh uchenykh, magistrantov, studentov i shkol'nikov «XVI Satpaevskie chteniya». - Pavlodar : S. Toraighyrov PSU, 2016. - P. 47-54.
5 Mendebaev, T. M., Dudak, N. S., Kasenov, A. Zh., Mukanov, R. B., Smailova, G. A. The use of Autodesk inventor of the system in the design of the tool head for machining holes // Trudy Mezhdunarodnykh Satpaevskikh chteniy «Konkurentnosposobnost' tekhnicheskoy nauki i obrazovaniya». - Vol. 1. - Part 1. - Almaty, 2016. - P. 238-243.
6 Dudak, N. S., Mukanov, R. B., Kasenov, A. Zh., Taskarina, A. Zh. The use of APM WinMachine system in the design of cutting tools // Materialy X mezhdunarodnoi nauchoi prakticheskoi konferencii «Klychevye voprosy v sovremennoi nauke-2014», 17-25 april 2014. - Vol. 17. - Sofia, 2014. - P. 47-50.
7 Makhov, A. A., Kopeykin, E. A. Design of spline broaches with MatLAB and T-Flex CAD 3D // Vestnik MGTU «Stankin», № 3 (30). - M., 2014. - P. 73-78.
8 Gorbunov, I. V., Efremenkov, I. V., Leont'ev, V. L., Gismetulin, A. R. Process Modeling Features machining in CAE-systems // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2013. - Vol. 15. - № 4-4ro - P. 846-853.
9 Denisova, N., Doronin, A., Zavalishin, Yu., Men'kov, A., Terushkina, N. Application software ASCON in the implementation of the university educational discipline // Journal «CAD and graphics», № 3. - M., 2014. - P. 74-79.
10 Kompaniya «Top Sistemy» vypustila novuyu versiyu sistemy avtomatizirovannogo proektirovaniya T-Flex CAD 15 [Electronic resource]. - URL: http://www.mashportal. ru/company_news-43039.aspx.
11 Preimushchestva Kompas-3D v SAPR - nebol'shoy obzor [Electronic resource].
- URL: http://texdizain.net/proektirovanie/37-preimuschestva-kompas-3d-v-sapr-nebolshoy-obzor.html.
12 Shelofast, V., Rozinskiy, S. Software company SEC «APM» - new opportunities and prospects // Journal CAD and Graphics, 2015, pp. 52-58
13 Frey, D. Learning Autocad 2007 and Autocad Lt 2007 the beginning: A practical guide, tutorial: Step by Step [Russ. ed.: I.L. Volkova] Izuchaem Autocad 2007 i Autocad Lt 2007 s samogo nachala / Prakticheskoe rukovodstvo, samouchitel' shag za shagom,
- M., 2008.
14 Denisov, M. A. Komp'yuternoe proektirovanie. ANSYS: Uchebnoe posobie,
- Ekaterinburg: Ural Federal University, 2014. - P. 77.
15 Comsol. Programmnyy paket dlya mul'tifizicheskogo modelirovaniya [Electronic resource]. - URL: https://www.comsol.ru/products.
16 Simufact Forming [Electronic resource]. - URL: http://www.lavteam.org/tags/ Simufact.
17 Adams. Sistema virtual'nogo modelirovaniya mashin i mekhanizmov [Electronic resource]. - URL: http://rusapr.ru/prod/progs/element.php?ID=835.
18 SAPR dly mashinostroeniy i promyshlennogo proizvodstva / Inzhenernye raschety i modelirovanie tekhnologicheskikh protsessov / MSC [Electronic resource]. - URL: http://www.cad.ru/ru/software/detail.php?ID=3181.
19 Parametricheskaya SAPR T-Flex [Electronic resource]. - URL: http://www. vokb-la.spb.ru/soft/t-flex/t-flex.html.
20 Zubenko, V. L. Rabota v srede T-Flex CAD/CAM/CAE/CAPP/PDM sistemy. Sbornik: Vysokie tekhnologii v mashinostroenii // Materialy vserossiyskoy nauchno-tekhnicheskoy internet konferentsii: 100 letiyu so dnya rozhdeniya doktora tekhnicheskikh nauk, professora, zasluzhennogo deyatelya nauki i tekhniki Papsheva Dmitriya Dmitrevica. - 2015. - P. 215-217.
Material received on 12.12.16.
А. Ж. Касенов1, Л. Д. Жанбулатова2, Д. А. Айдарханов2 Инженерлж кызметтеп колданбалы багдарламалар
С. ТораЙFыров атындаFы Павлодар мемлекетлк университет^ Павлодар к.
Материал 12.12.16 баспаFа TYCTi.
А. Ж. Касенов1, Л. Д. Жанбулатова2, Д. А. Айдарханов2 Прикладные программы в инженерной деятельности
Павлодарский государственный университет имени С. Торайгырова, г. Павлодар.
Материал поступил в редакцию 12.12.16.
Усынылган мацалада келеci сипаттамаларга байланысты (Компас, АРМ, T-Flex, AutoCAD, AnSYS, Comsol, Simufac, Adams, Nastran) цолданбалы багдарлама втмШц мумктдттерт салыстырмалы талдаулары: базалыц жэне тэжiрбиелiк курстар ушт эдктердщ жиыны; орыс тшдж интерфейс жиыны; интерфейcтi мецгеру циындыгы; аныцтамалыц жуйетц толыцтыгы мен сапасы; видеосабацтар мен оцу тэлiм жиыны; багдарламамен жумыс жасау ушт цосымша эдебиетпен цамтамасыз ету; модельдерЫ жацгырту циындыцтары, бiрнеше файлдармен бiр уацытта жумыс жасау мумктдш; багдарламаныц жеке модульдарымен бiрiгу жиыны; багдарламаныц тез эрекет етуi; багасы жэне т.б. Осы багдарламалыц внiмдi багаланган мумктдш мен мацсаты, жогары оцу орындарында заманауи нарыц ецбегтде цажеттi жогары бэсекелесткте кэЫби кузiреттi маманды дайындау.
В статье представлен обзор и сравнительный анализ возможностей прикладных программных продуктов (Компас, АРМ, T-Flex, AutoCAD, AnSYS, Comsol, Simufac, Adams, Nastran) по следующим характеристикам: наличие
методов для базового и продвинутого курсов; наличие русскоязычного интерфейса; сложность освоения интерфейса; полнота и качество справочной системы, наличие обучающих примеров и видеоуроков; обеспеченность дополнительной литературой по работе с программой; сложность воспроизведения моделей; возможность одновременной работы с несколькими файлами; наличие интеграции между отдельными модулями программы; быстродействие программы; цена и др. Оценена возможность и целесообразность использования этих программных продуктов в высших учебных заведениях для подготовки высококонкурентоспособного, профессионально компетентного специалиста, востребованного на современном рынке труда.
УДК 624.131.7
В. А. Козионов1, А. К. Алдунгарова2, А. И. Менейлюк3, К. М. Самат4
:к.т.н., профессор, 2PhD., ассоц. профессор, Павлодарский государственный университет имени С. Торайгырова, г. Павлодар, Казахстан; 3д.т.н., профессор, Одесская государственная архитектурно-строительная академия, г. Одесса, Украина; 4магистр, ведущий специалист, РГП «Госэкспертиза» по Павлодарской области, г. Павлодар, Казахстан
e-mail: [email protected]; [email protected]; [email protected]
РАСЧЕТ СТОЛБЧАТЫХ ФУНДАМЕНТОВ НА НЕЛИНЕЙНО ДЕФОРМИРУЕМОМ ОСНОВАНИИ ПО ПРОГРАММЕ SCAD
Обоснована методика расчета столбчатых фундаментов, учитывающая взаимодействие здания и нелинейно-деформируемого основания. С использованием инженерного метода прогноза нелинейных осадок фундаментов и компьютерной программы SCAD разработан алгоритм совместного расчета системы «основание — фундамент — надземная конструкция».
Ключевые слова: алгоритмы расчета, взаимодействие здания и основания, нелинейная осадка фундамента, программа SCAD.
ВВЕДЕНИЕ
В последние годы в проектных организациях Республики Казахстан большое распространение получила программа SCAD. Расчетами по данной программе методом конечных элементов можно отразить совместную работу здания и основания, далее «система», особенности проектируемого объекта и др. Вместе с тем, реализация расчетов ограничивается отсутствием в SCAD программы для определения размеров фундаментов, в том числе с учетом нелинейной работы основания. Это снижает возможности применения конечного элемента КЭ51, имеющегося в библиотеке программы, для учета нелинейной осадки основания при расчетах фундаментов.
Целью работы является разработка методики расчета столбчатых фундаментов с учетом нелинейной работы грунтов основания в рамках «системы» по программе SCAD.