© ЛУБСАНДОРЖИЕВА П.Б., АЖУНОВА Т.А., ЦЫБАНОВ К.Б. — 2008
АНТИОКСИДАНТНЫЕ СВОЙСТВА ЭКСТРАКТОВ ИЗ ПРОТИВОВОСПАЛИТЕЛЬНОГО СБОРА IN VITRO
П.Б. Лубсандоржиева, Т.А. Ажунова, К.Б. Цыбанов (Институт общей и экспериментальной биологии СО РАН, директор — д.б.н., проф. Л.Л. Убугунов)
Резюме. Липофильные и среднеполярные вещества противовоспалительного сбора обладают наиболее высокой антиоксидантной активностью.
Ключевые слова: экстракты, противовоспалительный сбор, антиоксидантная активность.
Противовоспалительное действие растительных экстрактов, содержащих сложную композицию биологически активных веществ (БАВ), реализуется через ряд эффектов: ослабление иммобилизации лейкоцитов, в результате которого ограничивается патологически повышенный синтез свободных радикалов, снижение концентрации цитотоксических окислительных агентов; ингибирование каскада метаболизма арахидоновой кислоты с уменьшением продукции медиаторов воспаления, снижение активности лизосомальных ги-дролаз и др. Антиоксидантная активность (АОА) растительных БАВ — одно из ведущих звеньев механизма противовоспалительного действия фитопрепаратов [6]. Ранее нами была изучена антиоксидантная активность in vitro водных извлечений противовоспалительного сбора, состоящего из черных листьев бадана толстолистного, листьев мяты перечной, цветов ромашки аптечной и травы тысячелистника обыкновенного в исходных соотношениях (3,0 : 2,8 : 2,4 : 1,8). Было установлено, что наибольший вклад в суммарную АОА водных извлечений сбора вносят водорастворимые поли-фенольные соединения черных листьев бадана и мяты перечной [4].
Цель данной работы — определить антиоксидантную активность экстрактов из противовоспалительного сбора in vitro и содержание в них биологически активных веществ.
Материалы и методы
Для получения сухих экстрактов сбор измельчали до размера частиц 1-2 мм, загружали в экстрактор, заливали экстрагентом в объеме, соответствующем соотношению сырье:экстрагент —
1:10, экстрагировали при соответствующей температуре, параметры экстракции указаны в таблице
1. Отфильтрованные извлечения объединяли, концентрировали до 1/10 первоначального объема, высушивали в вакуум-сушильном шкафу при температуре не выше 60 о С. Количественное содержание флавоноидов, антоцианов, дубильных веществ проводили по известным методикам ГФ XI изд. Антиоксидантную активность экстрактов определяли по описанному ранее методу с использованием в качестве модельной смеси суспензии желточных липопротеидов [4].
Величину АОА выражали в С ^,
(г/л) -1 — концентрации экстрактов, необходимой для ингибирования образования малонового диальдегида (МДА) на 50 %.
Результаты и обсуждение
Получены 7 экстрактов сухих из противовоспалительного сбора, содержащие липофильные, среднеполярные, водорастворимые БАВ (табл.1). Полиэкстракт (условное название Фитокол), полученный последовательной экстракцией сбора 80 % и 40 % этанолом содержит наибольшее количество экстрактивных веществ. Помимо каротиноидов, значительная часть дубильных веществ и флавоноидов, содержащихся в сборе, извлекается 80 % этанолом, что свидетельствует об их липофильной природе. В исходном сборе содержатся каротиноиды — 6,98 ±
0,41 мг%; флавоноиды — 2,96 ± 0,03 %; дубильные вещества — 9,45 ± 0,11%; антоцианы — 0,056 ±0,003 %; аскорбиновая кислота — 5,91 ± 0,02 %; полисахариды — 4,10 ± 0,25 %; арбутин — 3,08 ± 0,01%.
Липофильные БАВ более эффективно подавляют образование МДА, чем гидрофильные вещества: АОА экстрактов убывает в ряду: 80 % > 40 % > водный экстракт (табл. 2). Липофильная часть БАВ компонентов сбора, обладающих АОА, включает каротиноиды, витамины, хлорофиллы, сесквитерпеновые и тритерпеновые соединения, агликоны фенольных соединений и др. [1, 2, 3, 5]. Гидрофобная природа каротиноидов способствует включению их в окислительные реакции в мембранных фосфолипидно-белковых структурах прежде водорастворимых АО. Большинство каро-
Таблица 1
Условия экстракции противовоспалительного сбора для получения экстрактов
№ Тип экстрагента, концентрация Температура экстракции, о С Кратность и время экстракции Выход экстракта (в % от массы сырья)
1 Вода очищенная 90 2 ч 32,0
2 40 % этанол 90 2 ч 30,0
3 80 % этанол 18-20 2 ч 24,0
4 80 % этанол (I экстракция), вода очищенная (II) 18-20 (I экстракция), 90 (II) 2 ч (I), 1 ч (II) 32,0
5 80 % этанол (I экстракция), 40 % этанол (II) 18-20 (I экстракция), 90 (II) 2 ч (I), 1 ч (II) 34,5
6 96 % этанол (I экстракция), вода очищенная (II) 18-20 (I экстракция), 90 (II) 2 ч (I), 1 ч (II) 28,0
7 96 % этанол (I экстракция), 40 % этанол (II) 18-20 (I экстракция), 90 (II) 2 ч (I), 1 ч (II) 30,4
Таблица 2
Содержание биологически активных веществ в экстрактах и их АОА
Наименование АОА, (г/л) -1 Содержание БАВ*
ПФ, % ФВ, % АЦ,% АК,% КР, мг%
Экстракты из сбора (экстрагент): Водный 8,3 14,00 2,60 0,59 4,44
Водно-спиртовые: (40 %) 22,2 19,05 5,15 1,34 6,26 0,76
(80 %) 25,0 23,97 8,06 0,63 5,05 40,80
(80 % + вода) 20,0 17,01 3,54 0,50 4,83 19,90
(80 % + 40 %) 10,0 9,77 3,38 1,35 6,58 16,29
(96 % + вода) 15.0 14,59 7,41 0,43 3,15 24,0
(96 %+ 40 %) 19,2 17,70 3,16 1,16 5,53 21,6
Примечание: * БАВ — биологически активные вещества, среднее из трех определений; ПФ — полифенолы, ФВ — флавоноиды, АЦ — антоцианы, АК — аскорбиновая кислота, КР — каротинои-ды; прочерк означает, что вещества не обнаружены.
тиноидов в реакциях с пероксильными радикалами проявляют АОА [8]. Влияние каротиноидов на общую АОА экстрактов заметно при низких концентрациях: удаление липофильных веществ Фитокола экстракцией гексаном снижает суммарную АОА в диапазоне доз 0,067-0,2 мг/мл на 6-19 %.
Полиэкстракты (80% + вода и 96% + вода), представляющие комбинации водорастворимых и липофильных веществ имеют высокие значения АОА, но в диапазоне низких доз (до 0,02 мг/мл) показывают прооксидантное действие. Этот эффект можно объяснить концентрационной инверсией АОА каротиноидов [13] и полифенолов [10] в про-оксидантное.
В состав среднеполярных веществ, извлекаемых 40 % этанолом, входят галлотаннины, глико-зиды флавоноидов, фенолокислоты, углеводы и др. [1, 2, 3, 5]. Эффективные АО — полифенолы, фла-воноиды, содержащиеся в большом количестве в полиэкстрактах, кроме проявления АОА, способны ингибировать ряд клеточных и биохимических реакций, связанных с развитием воспалительного процесса. Так, при изучении механизма фармакологической эффективности флавоноидов, как противовоспалительных веществ, было показано, что флавоноиды оказывают сильный ингибирую-
щий эффект на экспрессию Сох-2 протеина — доминантный компонент образования простагландина в очаге воспаления. При этом, ингибирующий эффект убывал в ряду: флавоны > флавононы
> флавонолы > флаван-3-олы
> антоцианидины. Агликоны были более эффективны, чем их гликозиды. Эти результаты подтвердили, что важными факторами для проявления ингибирующей активности являются С2-С3 двойная связь и 4-оксо— функциональная группа С-кольца [14], тогда как для проявления высокой АОА важны число ОН — групп в В-кольце [8]. Содержащиеся в компонентах сбора АО, как кверцетин, апигенин, кроме подавления процессов перекисного окисления липидов, ингибируют высвобождение медиаторов воспаления, а лютеолин, в отличие от других флавоновых АО, не обладает ингибирующей активностью [7, 14].
Фенолокислоты, гликозиды флавоноидов, анто-цианы по отдельности уступают агликонам флаво-ноидов по АОА, но при совместном присутствии в экстрактах проявляют синергическое действие [9, 11]. Водорастворимый АО — аскорбиновая кислота, содержащаяся в высоких концентрациях в экстрактах (от 3,15 до 6.58 %), благодаря своим восстановительным свойствам является синерги-стом фенольных АО [12]. АОА водного экстракта значительно уступает таковой отвара сбора [4], что можно объяснить удалением летучих антиоксидантов (компонентов эфирных масел) при длительной сушке.
Таким образом, липофильные и среднеполярные вещества, извлекаемые из противовоспалительного сбора 80 и 40 % этанолом более эффективно подавляют образование МДА, чем водорастворимые вещества.
ANTIOXIDANT ACTIVITY OF EXTRACTS FROM ANTI-INFLAMMATORY HERB TEA IN VITRO
P.B. Lubsandorzhieva, T.A. Azhunova, K.S. Tsibanov (The institute of General and Experimental Biology, Ulan-Ude)
Lipophilic and middle polarity compounds of anti-inflammatory plant drug mixture show significant antioxidative activity.
ЛИТЕРАТУРА
1. Драник Л.И., Долганенко Л.Г. Фенольные соединения Matricaria recutita L. // Растит. ресурсы. — 1987. -Т. 23, вып. 1. — С. 144-149.
2. Захарова О.И., Захаров А.М., Смирнова Л.П., Ковинева В.М. Флавоны Mentha piperita сортов Селена и серебристая. // Химия природных соединений. — 1986. — № 6. — С.781.
3. Коновалов Д.А., Коновалова О.А., Челомбитько В.А. Биологически активные вещества Achillea millefolium L.s.L. // Растит. ресурсы. — 1990. — Т. 26, вып. 4. — С. 598-608.
4. Лубсандоржиева П.Б., Ажунова Т.А., Цыбанов К.Ц. Антиоксидантные свойства противовоспалительного сбора in vitro. // Сибирский мед. журнал. — 2006. — №
6. С.87-89.
5. Растительные ресурсы СССР: Цветковые растения, их химический состав, использование; Сем. Hydrangeaceae — Haloragaceae. — Л.: Наука, 1987. — 326 c.
6. Чернов Ю.Н., Бузлама А.В., Дронова Ю.М. Полифенольные соединения: структура, свойства и прикладные аспекты применения. // Фарматека. — 2004. № 8 (86). — С. 43-48.
7. Cho S., Park S., Kwon M., Jeong T., Bok S., hoi W., et al. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF— kappaB pathway in lipopolysaccharide-stimulated macrophage. // Mol. Cell. Biochem. — 2003. V. 243. P. 153-160.
8. Critical rewiews of oxidative stress and aging. Advances in basic science, diagnostics and intervention. // Editors R.G. Cutler, H. Rodriquez. V.1. 2003. 822 p.
9. KongJ.-M., ChiaL.-S., GohN.-K., Chia T.-F., Brouillard R. Analysis and biological activities of anthocyanins. // Phytochemistry. — 2003. — V.64, No 5. — P. 923-933.
10. Labieniec M., Gabryelak T., F. Giancarlo. Antioxidant and pro-oxidant effects of tannins in digestive cells of the freshwater mussel Unio tumidus. // Mutation Research. 2003. V. 539. P. 19-28.
11. Lopez M., Martinez F., Del Valle C., Ferrit M., Lugue R. Study of phenolic compounds as natural antioxidants by a fluorescence method. // Talanta. 2003. V. 60. P. 609-616.
12. Milde J., ElstnerE.F., Grafmann J. Synergistic inhibition of low-density lipoprotein oxidation by rutin, y-terpinene,
and ascorbic acid. // Phytomedicine. — 2004. — V.11, No 2-3. — P. 105-113.
13. Polyakov N.E., Leshina V., Konovalova A., Kispert L.D. Carotenoids as scavengers of free radicals in Fenton reaction: antioxidants or pro-oxidants? // Free Radic. Biol. Med. — 2001. — V. 31, № 3. — P. 398-404.
14. Takano-Ishikawa Y., Goto M., Yamaki K. Structure — activity relations of inhibitory effects of various flavonoids on lipopolysaccharide-induced prostaglandin E2 production in rat peritoneal macrophages: comparison between subclasses of flavonoids. // Phytomedicine. — 2006. — V. 13, N. 5. — P. 310-317.
© МАРТЫНОВ А.М., ЧУПАРИНА Е.В. — 2008
ФИАЛКА ПЕСЧАНАЯ (VIOLA ARENARIA DC.) — НОВЫЙ ИСТОЧНИК МАКРО- И МИКРОЭЛЕМЕНТОВ
А.М. Мартынов, Е.В. Чупарина (Иркутский государственный институт усовершенствования врачей, ректор — д.м.н., проф. В.В.Шпрах, кафедра фармации, зав. — д.ф.н., проф. Г.Н.Ковальская; Институт геохимии им. А.П. Виноградова СО РАН, директор — д.г.-м.н., академик РАН М.И. Кузьмин)
Резюме. Изучен элементный состав надземных органов фиалки песчаной — Viola arenaria DC., сем. Violaceae. Обнаружены 20 макро- и микроэлементов: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba, Pb и установлено их количественное содержание. Преобладают среди них калий, фосфор, магний, кальций, кремний.
Ключевые слова: фиалка песчаная, макро- и микроэлементный состав.
Фиалка песчаная — Viola arenaria DC., семейства фиалковых (Violaceae) представляет собой многолетнее травянистое растение, достаточно широко распространенное во флоре России (Европейская часть, Сибирь, Дальний Восток) [6]. Этот вид издавна применяется в народной медицине в качестве отхаркивающего, мягчительного, рвотного средства, при заболеваниях горла и скрофулезе [4]. В надземной части данного вида содержатся флавоноиды, фенолкарбоновые кислоты, кумарины и сапонины [4]. Известно, что физиологическое действие растительных препаратов на организм обусловлено не только биологически активными соединениями растений, но и макро- и микроэлементным составом. Комплекс минеральных веществ растений имеет более высокую биодоступность по сравнению с минералами неорганического происхождения, поскольку он прошел своеобразный биологический фильтр [3]. Растительные объекты являются перспективными источниками различных макро- и микроэлементов и могут использоваться в качестве профилактических и лечебных средств в комплексной терапии микроэлементозов [2,3].
Цель данной работы заключалась в исследовании элементного состава надземных частей фиалки песчаной.
Материалы и методы
Объектом исследования служили высушенные надземные органы растения (стебли, листья, цветки), заготовленные во время цветения, собранные в 2006-2007 гг. в Слюдянском районе Иркутской области.
Элементный состав определяли с помощью рентгенофлуоресцентного анализа (РФА). Этот метод позволяет получить надежные и хорошо вос-
производимые результаты, не дает погрешностей, возникающих при разрушении растительного материала под воздействием высокой температуры (при озолении) или химических реагентов.
Для исследования, в соответствии с методикой РФА, были приготовлены излучатели растительного материала. Методика получения излучателей состояла в прессовании таблеток из измельченных (менее 70 мкм) испытуемых образцов сырья на подложке из кислоты борной.
Аналитические линии элементов №а, Мд, А1, Si, Р, S, С1, К, Са, ТС, Мп, Fe, М, Си, Zn, Вг, Rb, Sr, Ва, РЬ измеряли на рентгеновском спектрометре S4 Рюпеег (Вгикег, АХ5) с использованием рентгеновской трубки с родиевым анодом, напряжение составляло от 30 до 50 киловольт, сила тока изменялась в зависимости от элемента.
Для каждого элемента также были выбраны условия измерения (время набора импульсов, кристалл-анализатор, тип регистрирующего устройства). Градуировочная зависимость строилась с использованием ГСО зерен пшеницы СБМП-02 [1] и китайских СО веток и листьев тополя GSV-3, листьев чая GSV-4 [7].
Погрешности, характеризующие сходимость результатов РФА для большинства элементов не превышает 5% отн. Пределы обнаружения рассчитывались по 3 а-критерию с учетом погрешности измерения фона рядом с линией [5] с помощью излучателей стандартных образцов с содержаниями элементов близких к фоновым. Их значения составили, процент: № (0,003), Мд (0,001), А1 (0,0005), Si (0,0003), Р (0,0002), S (0,0002), С1 (0,0004), К (0,0002), Са (0,0001), Т (0,0004), Мп (0,0005), Fe (0,0005), № (0,0001), Си (0,0001), Zn (0,0001), Вг (0,0001), Rb (0,0001), Sr (0,0002), Ва (0,0004), РЬ (0,0003). Правильность методики контролировали с помощью ГСО состава клубней картофеля СБМК-02 и