A, UNiVERSUM:
№ 12 (129)_ТЕХНИЧЕСКИЕ НАУКИ_декабрь. 2024 г.
CHEMICAL ENGINEERING
DOI - 10.32743/UniTech.2024.129.12.18983
ANALYSIS OF PHYSICAL AND CHEMICAL PROPERTIES OF THERMOSTABLE COATINGS
OBTAINED FROM LOCAL RAW MATERIALS
Islom Beshimov
Researcher Of the Bukhara, Engineering and Technological Institute, Uzbekistan, Bukhara E-mail: [email protected]
АНАЛИЗ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ТЕРМОСТАБИЛЬНЫХ ПОКРЫТИЙ,
ПОЛУЧЕННЫХ ИЗ МЕСТНОГО СЫРЬЯ
Бешимов Ислом Акмалжонович
исследователь
Бухарского инженерно-технологического института, Республика Узбекистан, г. Бухара
ABSTRACT
In this study, the mass loss kinetics of a synthesized oligo(polymer) thermostable coating were investigated over a temperature range of 0 °C to 300 °C. The research focused on wooden samples treated with solutions of the thermostable compound in concentrations ranging from 2% to 8%. The purpose of the study was to evaluate the effectiveness of the coatings in reducing the combustibility of the treated wood under varying thermal conditions. For the sample treated with a 2% solution, the initial mass of the wood was measured at 6.64 g. When subjected to heating at 100 °C, the mass of the sample decreased to 6.58 g, indicating a mass loss of 0.06 g. This mass change was systematically analyzed, and a regression equation was developed using a graphical method to describe the relationship between temperature and mass loss. The derived equation provided insights into the thermal degradation behavior of the coated wood samples.
АННОТАЦИЯ
В данном исследовании изучена кинетика потери массы синтезированного олиго(полимерного) термостабильного покрытия в температурном диапазоне от 0 °C до 300 °C. Исследование было сосредоточено на древесных образцах, обработанных растворами термостабильного соединения в концентрациях от 2% до 8%. Целью исследования была оценка эффективности данных покрытий в снижении горючести обработанной древесины при различных температурных условиях. Для образца, обработанного раствором с концентрацией 2%, первоначальная масса древесины составляла 6,64 г. При нагреве до 100 °C масса образца уменьшилась до 6,58 г, что соответствует потере массы в 0,06 г. Данные о потере массы были систематически проанализированы, и на основе графического метода было выведено уравнение регрессии, описывающее зависимость между температурой и потерей массы. Полученное уравнение предоставило ценные сведения о термическом разложении покрытых древесных образцов, подчеркивая повышенную стойкость материала к термическому воздействию. Полученные результаты демонстрируют значительную роль термостабильных покрытий в повышении термической устойчивости древесины, что делает их перспективным решением для экологически устойчивой противопожарной защиты.
Keywords: thermostable, regression, temperature, wood, ecological, structure.
Ключевые слова: термостабильность, регрессия, температура, древесина, экологичность, структура
Introduction. In recent years, the development and application of environmentally efficient methods to enhance the fire resistance of wooden materials have become a critical area of focus in materials science and engineering. Wooden materials, being inherently flammable, pose significant safety challenges in construction, furniture manufacturing, and other industrial applications. The increasing prevalence of fire incidents worldwide has necessitated the exploration
of innovative strategies to mitigate fire risks associated with wood and other cellulose-based materials[1-3]. Among the various approaches studied, the development of thermally stable coatings has emerged as one of the most promising solutions.
Thermally stable coatings are engineered materials designed to create a protective barrier on the surface of wood, significantly reducing its combustibility. These coatings typically function by undergoing
Библиографическое описание: Beshimov I. ANALYSIS OF PHYSICAL AND CHEMICAL PROPERTIES OF THERMOSTABLE COATINGS OBTAINED FROM LOCAL RAW MATERIALS // Universum: технические науки: электрон. научн. журн. 2024. 12(129). URL: https://7universum.com/ru/tech/archive/item/18983
№ 12 (129)
aeKaGpb, 2024 r.
physical or chemical changes when exposed to high temperatures, thereby delaying ignition and slowing the spread of fire. They can be formulated from a variety of materials, including polymers, inorganic compounds, and hybrid composites. Many such coatings are further enhanced with additives like flame retardants, intumescent agents, or nanomaterials to improve their performance under fire exposure[4-9].
The environmental efficiency of these methods lies in their ability to achieve high levels of fire resistance without relying on toxic chemicals that may harm human health or the environment[10]. Traditional fireproofing methods often involve the use of halogenated flame retardants, which, despite their effectiveness, are associated with the release of hazardous substances during both application and combustion. In contrast, modern thermally stable coatings are increasingly formulated using eco-friendly materials that are biodegradable, non-toxic, and free from harmful emissions. This shift aligns with global efforts to promote sustainability and reduce the ecological footprint of industrial processes[11-13].
Materials and methods. The synthesized thermally stable coating was dissolved using a solvent to prepare solutions ranging from 2% to 8%. Wooden samples of identical dimensions were submerged in the prepared liquid for 20 minutes utilizing the dipping method to ensure uniform application of the coating. This method allowed the coating solution to penetrate the
surface of the wood evenly, enhancing its adherence and coverage. During the testing process of the 2% thermally stable coating solution, the mass of an individual wooden sample was meticulously measured before and after the treatment. This step was conducted to evaluate the absorption capacity of the wooden material and to assess the effectiveness of the coating in forming a protective layer on the surface. The samples were observed for mass changes as the temperature increased.
Results and discussion. As the temperature increased incrementally by 50°C, the mass loss progressively intensified. In this process, the sample treated with the 2% solution exhibited a significantly greater mass loss compared to the 8% solution. A regression equation was developed based on the mass loss of samples treated with solutions of varying concentrations (Figures 1-4). The analysis of the mass loss of wood samples treated with 2%, 4%, 6%, and 8% solutions of a thermally stable compound when heated up to 300°C revealed significant results. Based on the obtained data, it was proven that increasing the concentration of the thermally stable compound has a noticeably positive effect on reducing mass loss. It was determined that wood impregnated with an 8% solution of the thermally stable compound demonstrates superior resistance to thermal effects.
Figure 1. Graphical representation of the regression equation for the 2% sample at temperatures ranging from 0°C to 300°C.
№ 12 (129)
aeKaGpb, 2024 r.
Figure 2. Graphical representation of the regression equation for the 4% sample at temperatures ranging from 0°C to 300°C
Figure 3. Graphical representation of the regression equation for the 6% sample at temperatures ranging from 0°C to 300°C
Figure 4. Graphical representation of the regression equation for the 8% sample at temperatures ranging from 0°C to 300°C.
№ 12 (129)
декабрь, 2024 г.
For the 2% solution-treated sample, the initial mass of the wooden specimen was 6.64 g. Upon heating to 100°C, the sample's mass decreased to 6.58 g, corresponding to a mass loss of 0.06 g. At 150°C, the sample's mass further decreased to 6.47 g, resulting in a
mass loss of 0.17 g. When the temperature was raised to 200°C, the mass loss continued to increase, with the sample's mass reducing to 6.26 g, and the total mass loss reaching 0.38 g.
Figure 5. Images of wooden samples treated with solutions of varying concentrations after charring
When the sample reached a temperature of 300°C, the charring process began, replicating the results obtained through the Differential Thermal Analysis (DTA) method. As shown in Figure 5, the charring process occurred without any observable volumetric changes in the sample. Even when the sample was heated to temperatures of 450°C and above, no sparking or ignition was observed, and the structural integrity of the sample remained intact, retaining its original form.
Conclusion. The synthesized oligo(poly)mer demonstrated thermal stability due to the functional
groups in its structure, as confirmed by the results obtained from Differential Thermal Analysis (DTA) and thermal treatment kinetics. The findings reaffirm that the oligo(poly)mer exhibits significant thermal stability. Experimental results (Figure 5) show that the wooden samples were subjected to increasing temperatures until the charring stage was reached, further validating the effectiveness of the thermostable properties of the synthesized compound. This study highlights the potential application of the oligo(poly)mer in enhancing the thermal resistance of wooden materials under high-temperature conditions.
References:
1. Н.Ш. Паноев., В.Н. Ахмедов. Кремнийорганик бирикмлар асосидаги теплоизоляцион копламаларнинг янги таркибини яратиш ва хоссаларини урганиш // Фан ва технологиялар таравдиёти. Илмий-техникавий журнал, Бухоро, 2019 №3. 64-69 б.
2. В.Н. Ахмедов., М.С. Рахматов., Н.Ш. Паноев. Технология получения композиций на основе кремнийоргани-ческих гидрофобизирующих полимеров // II international scientific conference of young researchers. Baku, 2018. С. 472-474.
3. Beshimov I. et al. Synthesis and properties of organic silicon (oligo) polymers //Universum: технические науки. -2023. - №. 12-8 (117). - С. 38-42.
4. Pal G.K., Suresh P.V. Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen //Materials Science and Engineering: C. - 2017. - Т. 70. - С. 32-40.
5. Axmedov V.N, Shodiyev S.V, Olimov B.B Исследование свойств модифицированного жидкого стекла. UNIVERSUM технические науки. Выпуск 8:(125) Август 2024. 10-13 с.
6. L.N.Niyazov., Panoyev N.Sh., V.N.Axmedov., S.M Murodjonov., A.A Xaydarov. Гидрофобизация цементных и керамических изделий с использованием водорастворимих кремнийорганических соединений // Композиционные материалы Узбекиский научно-технический и производственный журнал, 2019. №1. 106-109 c.
7. Ахмедов, В.Н., Олимов, Б.Б. У., & Назаров, Ш.К. (2020). Электронная структура и квантово-химические расчёты виниловых эфиров фенолов. Universum: химия и биология, (4 (70)), 53-56.
8. Olimov, B.B., Ahmedov, V.N., & Hayitov, S. (2020). Ikki atomli fenollar asosida vinilli efirlarni olish usullari. Fan va texnologiyаlar taraqqiyoti ilmiy-texnikaviy jurnal, (1).
9. Олимов, Б.Б., & Ахмедов, В.Н. (2019). Винилацетилен асосида фенолларнинг винил эфирлари синтези." Замонавий ишлаб чикаришнинг мухандислик ва технологик муаммоларини инновацион ечимлари" Халкаро илмий анжуман материаллари Бухоро, 37-39.
10. Паноев, Э.Р., Дустов, Х.Б., & Ахмедов, В.Н. (2021). Проблемы коррозии в кислых компонентных системах и способы ее уменьшения. Universum: технические науки, (12-5 (93)), 47-50.
№ 12 (129)
UNIVERSUM:
ТЕХНИЧЕСКИЕ НАУКИ
декабрь, 2024 г.
11. Ахмедов, В.Н., & Олимов, Б.Б. (2020). Способ получения виниловых эфиров на основе винилацетилена. Gaydar Aliyevning, 97.
12. Olimov, В., & Akhmedov, V. (2020). The effect of reaction duration and catalyst on the synthesis of arylvinyl esters. Збiрник наукових праць ЛОГО!, 33-37.
13. Olimov, B.B., & Yoldosheva, N.J. Gravimetric study of the mechanism of action of corrosion inhibitors used in the oil and gas industry. Международный научно-образовательный электронный журнал «Образование и наука в xxi веке». Выпуск, (19).