Анализ и классификация методов идентификации производственного шума в стройиндустрии
С.Л. Пушенко, Н.Ю. Волкова, Е.В. Стасева
В настоящее время в строительной индустрии обращается особое внимание на создание более благоприятных условий для высокопроизводительного труда, улучшения санитарно-гигиенических условий [1]. Анализируя рабочие места можно заметить, что практически на всех возникает профессиональный риск заболевания и травмирования от фактора- производственный шум [6,7]. Для того, чтобы уменьшить риск от фактора риска необходимо установить причину возникновения, пространственные и временные характеристики, вероятность проявления и тяжести последствий. При этом если рассматривать работы по улучшению акустических характеристик, то можно сказать, что ведутся как при проектировании новых машин и модернизации существующих (шумозащита в источнике возникновения), так и в условиях их эксплуатации (шумоглушение на путях распространения шума).
Необходимо учитывать, что мерой чувствительности органов слуха к восприятию звуковых волн является уровень интенсивности звука [2]. В свою очередь, который выражается через поток звуковой энергии или звуковую мощность.
Работники реагируют в большей степени на изменение интенсивности звука, т.е. на соотношение между новым и предыдущим значением звукового давления. В связи с этим при изменении шума используется шкала уровней звукового давления [2,4].
Если рассматривать, к примеру, экспериментальные исследования операторов заточных станков: травматизм операторов станков, то можно наблюдать возрастание коэффициента частоты травматизма зависит от увеличения шума станка на рисунке1 [1]. Данный коэффициент показывает, что травматизм составляет 5-6 % при увеличении уровня звука на 2 дБА.
- 30
20 -ю. -
"?8 30 82 84 86 88 л В А 80 82 84 86 88 90
Рис.1. - Взаимосвязь уровней звука станков (дБА) и коэффициентами частоты травматизма
Можно отметить, что при работе оборудования и строительных машин и механизмов под действием различных силовых факторов возникает вибрация деталей и элементов и присоединенных к ней конструкций различного рода, вызывающие колебания окружающей воздушной среды. Колебания воздушной среды могут вызвать, к примеру, шпиндели и валы с деталями на них, крыльчатки вентиляторов, выбросы газовых струн аэродинамических устройств и тд. Такие колебания работниками воспринимается как звук. Поэтому если рассматривать с данной точки зрения, то вокруг работающей машины, оборудования образуется звуковое поле, которое характеризуется переменным звуковым давлением и интенсивностью излучения.
Из выше изложенного следует, что чаще всего в стройиндустрии чаще всего возникает механический шум. Но нужно также учитывать, что акустический сигнал распространяется в виде волн в воздухе и в элементах конструкциях машин и оборудования [1,3]. Вибрационные и шумовые измерения выполняются в основном на измерительной аппаратуре с применением акселерометра для измерения вибрации и микрофона для измерения шума.
Стандартными шумовыми характеристиками технологического и инженерного оборудования в соответствии со СНИП 23-03-2003 являются: октавные уровни звуковой мощности корректированный уровень
звуковой мощности ЬМ,А, а также эквивалентные Ьм,Аэкв и максимальные Ь^Амакс
корректированные уровни звуковой мощности для источников непостоянного [5].
Следовательно, значения шумовых характеристик машин и оборудования должны быть обоснованы с помощью результатов измерений их одним из методов по ГОСТ 23941-79, данными о шумовых характеристик лучших моделей аналогичного оборудования или машин, выпускаемых за рубежом, анализом используемых в машине методов и средств снижения шума, оценкой разработанных средств защиты от шума до допустимых уровней и предложенным планом мероприятий по снижению шума до нормативного уровня.
Для определения шумовых характеристик строительных машин и оборудования предусмотрено пять методов [10]:
1) Технический метод измерений в гулком помещении;
2) Технический метод измерения в свободном звуковом поле над отражающей плоскостью;
3) Ориентировочный метод измерений в условиях эксплуатации;
4) Точный метод измерений в специальной реверберационной камере;
5) Точный метод измерений в заглушенной камере.
Шумовые характеристики в первых двух методах в свободном звуковом поле над звукоотражающей плоскостью и в реверберационном помещении путем прямых измерений и путем сравнения с образцовым источником шума применяются практически ко всем машинам, но предъявляют определенные требования к измерительным помещениям и требуют измерения их акустических характеристик и испытаний характера звукового поля [11].
Ориентировочный метод разрешает проведение измерений в обычных производственных помещениях без испытаний шумовых характеристик помещений, но точность таких измерений недостаточна для целей контрольных испытаний [9]. Этот метод обеспечивает получения максимального среднего квадратичного отклонения уровней звуковой
мощности в полосах частот и корректированного по характеристике А уровня звуковой мощности по ГОСТ 23941-2002 [12]. Его чаще всего используют тогда когда невозможно применить технический и точный метод.
Самые точные данные показывают последние два метода. Они применяются для машин и оборудования небольшого размера, потому что условие измерений заключается в том, что объем камеры должна превышать в 100-200 раз объем машины или оборудования по ГОСТ Р 51400-99. Точность измерений в заглушенной камере лежит в пределах 0,5-1,5 дБ.
Соответственно, определение шумовых характеристик оборудования и машин помогает обеспечить возможность дальнейшего прогноза эффективности и экономичности процесса [13] снижения шума, и, следовательно, выбора высокоэффективных и экономичных средств от производственного шума.
Литература:
1. Мыльнев, В.Ф Шум и вибрации поршневых двигателей. Источники, методы исследования / В.Ф. Мыльнев, А.Б. Гасанов. -Новочеркасск: ЮРГТУ (НПИ), 2000.- 93 с.
2. Методы расчета шумозащиты машин : учеб. пособие / О. Н. Поболь.- Москва: Машиностроение, 1990. - 53 с.
3. Faisal A. A., Selen L. P. J., Wolpert D. M. Noise in the nervous system //Nature Reviews Neuroscience. - 2008. - Т. 9. - №. 4. - С. 292-303, [Электронный ресурс]. - Режим доступа: Интернет: www.nature.com/reviews/neuro (доступ свободный) - Загл. с экрана. - Яз. англ.
4. Hansen C. H., Bies D. A. Engineering Noise Control. - 1995, [Электронный ресурс]. - Режим доступа: Интернет: http://www.who.int/entity/occupational_health/publications/noise10.pdf (доступ свободный) - Загл. с экрана. - Яз. англ.
5. Пушенко С.Л., Волкова Н.Ю. Способы и средства снижения шумовых нагрузок на предприятиях стройиндустрии [Электронный ресурс] //
«Инженерный вестник Дона», 2012, №4 (часть 2). - Режим доступа: http://www.ivdon.ru/magazine/archive/n4p2y2012/1310 (доступ свободный) -Загл. с экрана. - Яз. Рус.
6. Пушенко С.Л., Волкова Н.Ю. Производственный шум - как элемент профессионального риска на предприятиях стройиндустрии [Электронный ресурс] // «Инженерный вестник Дона», 2012, №4 (часть 1). -Режим доступа: http://www.ivdon.ru/magazine/archive/n4p1y2012/1124 (доступ свободный) - Загл. с экрана. - Яз. Рус.
7. Пушенко С. Л., Страхова Н.А. Методология управления рисками охраны труда на предприятиях стройиндустрии: Монография.- Ростов-на-Дону: ЗАО «Ростиздат», 2011-298 с.
8. ГОСТ 31297-2005 - Шум. Технический метод определения уровней звуковой мощности промышленных предприятий с множественными источниками шума для оценки уровней звукового давления в окружающей среде
9. ГОСТ 12.1.028-80* ССБТ. Шум. Определение шумовых характеристик источников шума. Ориентировочный метод
10. ГОСТ 31171-2003 (ИСО 11200:1995). Шум машин. Руководство по выбору метода определения уровней звукового давления излучения на рабочем месте и в других контрольных точках
11. ГОСТ ИСО 362-2006 Шум. Измерение шума, излучаемого дорожными транспортными средствами при разгоне. Технический метод
12. ГОСТ 23941-2002 Шум. Методы определения шумовых характеристик. Общие требования
13. Беспалов В.И., Сысоев В.Н. Исследование процессов образования и излучения шума при уплотнении бетонной смеси в металлических формах на заводах ЖБИ [Электронный ресурс] // «Инженерный вестник Дона», 2012 г., № 1, - Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2011/422 (доступ свободный) - Загл. с экрана. - Яз. Рус.