Научная статья на тему '目标检测算法及其在织物疵点检测场景中的应用研究'

目标检测算法及其在织物疵点检测场景中的应用研究 Текст научной статьи по специальности «Техника и технологии»

CC BY
58
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
目标检测 / YOLO / 织物疵点检测 / target detection / YOLO / fabric defect detection

Аннотация научной статьи по технике и технологии, автор научной работы — Tang Li, Shi Yishan, Xiang Xianwu, Mei Shunqi

在纺织行业的自动化和智能化的发展趋势下, 织物疵点检测是纺织行业中的重要研究方向. 近年来, 基于深度学习的目标检测算法被广泛应用于织物检测领域, 极大的促进了纺织行业智能化的发展. 为此针对 YOLO 系列算法在织物疵点检测领域的研究现状, 从以下方面进行分析. 首先总结目标检测发展趋势; 其次, 总结分析了 YOLO 系列算法结构和作用; 接着论述了基于 YOLO 算法在织物疵点检测检测领域的应用. 最后展望了目标检测存在的问题和未来发 展方向.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

An Examination of Algorithms for Target Detection and Their Application in Fabric Defect Detection Situations

Fabric defect detection is a significant area of research under the textile industry's growing trend toward automation and intelligence. Deep learning-based target identification algorithms have been applied extensively in the field of fabric detection in recent years, which has tremendously aided in the advancement of intelligence in the textile sector. The following factors are taken into consideration when analyzing the research state of YOLO series algorithms in the field of fabric flaw identification. It begins by summarizing the target detection development trend. Next, it summarizes and examines the structure and function of the YOLO family of algorithms. Finally, it talks about the use of YOLO algorithms and their derivatives in the field of fabric flaw identification and inspection. Lastly, it considers the issues and potential paths for target detection development in the future.

Текст научной работы на тему «目标检测算法及其在织物疵点检测场景中的应用研究»

For citation: Tang Li, Shi Yishan, Xiang Xianwu, Mei Shunqi. An Examination of Algorithms for Target Detection and Their Application in Fabric Defect Detection Situations // Grand Altai Research & Education — Issue 2 (20)'2023 (DOI: 10.25712/ASTU.2410-485X.2023.02) — EDN: https://elibrary.ru/rsxsqc

UDK 677.014

An examination of algorithms for target detection

A

AND THEIR APPLICATION IN FABRIC DEFECT DETECTION SITUATIONS

Tang Li1, Shi Yishan1, Xiang Xianwu1, Mei Shunqi1

1 Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, 430073, China E-mail: [email protected], [email protected]

Abstracts: Fabric defect detection is a significant area of research under the textile industry's growing trend toward automation and intelligence. Deep learning-based target identification algorithms have been applied extensively in the field of fabric detection in recent years, which has tremendously aided in the advancement of intelligence in the textile sector. The following factors are taken into consideration when analyzing the research state of YOLO series algorithms in the field of fabric flaw identification. It begins by summarizing the target detection development trend. Next, it summarizes and examines the structure and function of the YOLO family of algorithms. Finally, it talks about the use of YOLO algorithms and their derivatives in the field of fabric flaw identification and inspection. Lastly, it considers the issues and potential paths for target detection development in the future.

Keywords: target detection, YOLO, fabric defect detection

m^1, ^i^1, fift^1, mm1

1 430073

E-mail: [email protected], [email protected]

m YOLO

* This paper was supported by the National and Hubei Provincial High-end Textile Equipment Intellectual Intelligence

Base Programme (111HTE2022002, HWZ201819). ** (111HTE2022002, HWZ201819).

тЖ, YOLO ЖШШ^ЗДШ; ШФ^ШШТ YOLO

М^Й.

ШП: ЭШШ; YOLO; ШШ&ШШШ

0

ттш^мтшттжшшт^^-, ш&штшт

шшлмта, ишш. ЙХ^Х^ШЙЗД^ШШШШ, Й ЩШйШШЩ.

ш. шшшйш&штххштш, тт^ тшм,

ШМ, [1,2].

фй^вд, ЙШШШ^Й, шшш^т^, ^шймм&тжш ^шжш.

1

2014 2014 ^тшшмшэышшшшт, 2014

^^^Ш^ЗОДЭШЭДМЭД [3]. 1.

Ш 1 ШЫШШШЖМШ^М

Fig. 1. Evolution of target detection algorithms

1.1

ШШ&^ЭД, Ш.ШШШШ Viola Jones Detector [4].

ШШР Ы.

Ш, RÄ, (К^ШХШ^), HOG Detector [5]

DPM Detector [6] (Hard negative mining), &

(Bounding box regression) (Context priming)

m imx^mmummmmx^xmmm,

(Convolutional

Neural Network, CNN) (Deep Neural Network, DNN).

Convolutional nmEx^mmm, ^w^xrnx.

1.2

: (anchor-

based) (anchor-free). (One Stage)

ft^&g^&tl (Tow Stage). (№ 2):

UM, (region proposal, » RP,

(Spatial Pyramid Pooling Layer, SPP) ^T^,

R-CNN, Fast R-CNN, Faster R-CNN.

тктш

(Ш 3): шшя жШ^ФЕЙ, ът. штжшшштяяш, тшжшж'\\ m

ШШЖ&, Ш^тШШШ^т ШЖШЯ SSD, YOLO Ш.

Fig. 3. General flowchart for one-stage target detection

штштжшшшм: ЮТМйй^Ъ», нвдплт^м&ш, шпшш

тт.

.

Anchor free ^МХ 2015 ^ CVPR fä DenseBox.

,) anchor, ЖШШ& ^ВШИ. ЭД1Ш, Anchor free

тш^, жш^ШШМФ, ШШШЯЖ,

yolo

2.1 YOLO

YOLO. 4. *

^ YOLO ^ij, . YOLO

(1) (Backbone),

^m. (2) (Neck),

^ (Head),

Fig. 4. General architecture of YOLO algorithm 2.2 YOLO MMM&RR&M

yolovi m^rnwm^, Mmm 24 ^«rM^P 4 ^s^mfcr^w

YOLOv2 [6] (1) Batch normalization, ^

^IM^BK, (2) S^ anchor ISfgftRfl. #

YOLOvl + + ! + S^ anchor

^^mrnsuftRrninrn, rn&WMBfc, it«BJ\ fe&BM. (3) k-

means M^teUM anchor. (4) (5)

YOLOv3 [8] Backbone. ^ ResNet IM^i^, YOLOv3 i£if

7BMl Backbone, 19 ^7 53, &RMWT

2 ift^M, 3x3, mmrnwrn^, SMMP

YOLOv3 mfflHfflK^l^«,

G^ffl^NR-imrnftRrn. ft^ffl spp »^wm^i^«^ ^

^M^ifW^MM, ffl CIoU Loss DloU Loss, Bil^S^ft

R^mtiftR^is^.

YOLOv4[9] f^ffl CSPNet IM^tl CSP v3 l Darknet53,

3IA PANet PAN

^ (Eliminate grid sensitivity), (Mosaic data augmentation),

(Optimizered anchors)

YOLOv5 [10] Ä-^fättl&^fä, ü&^fäH&Ätt, ^MÄM'fc

mm anchor «m ^xmm

anchor ^ÄABt, anchor, MMEffi^

^mm^. ^ Warmup and Cosine LR scheduler, EMA

(Exponential Moving Average) INt YOLOv5 iffl PyTorch

YOLOv6 [11]

a7 Rep-PAN m YOLOX mg^fö

ÄfsE^MsE^M,

iffl SloU Loss,

YOLOv7 [12] fltftN^I^, i£if ELAN

(Efficient Layer Aggregation Network). + . ÄS®

yolov7

YOLOv8 [13] TOMH^SÄ«, SOTA

»Jm

3.1 YOLOv2

Zhang [14] m YOLOv2 ^ffl^^KM^«^, Älättt YOLO9000, YOLO-VOC, Tiny-YOLO !#iM,

№ YOLOv2 Xt YOLOv1 Äfr7&Ä, 7 YOLOv2 R

3.2 YOLOv3

fi« [15] &Ä Tiny-YOLOv3 I^fMHf

1x1 mmmm^Mmmmmm^,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

&ÄH& mAP 3.1%, fH^MÄ^m

3.3 YOLOv4

[16] rnsx yolov4 imm&Mfflx^ffliximmm&wrn. it m yolov4 ntmtm^guimm^x^, ##tt^MlRrn sm

yolov4

ZRMimrn®. s ufomi&g&rnBM. PANet ^mmm, ^m^

im K-means++ M«S anchor R—. ^Wt, YOLOv4 Wtel

precision b№ YOLOv4 Wtei^^ 2.00%, mAP 2.72%.

3.4 YOLOv5

Zhou [17] YOLOv5 Backbone

N0ti£if7 ResDCN m

Focal EloU M&am,

3.5 YOLOv7

[18] ^»MlR®, » YOLOv7

DR-SPD, DRes

«nt^n spd

3.6 YOLO

s^m yolo ^w^wnMiM^^^tt^lfm&Rfi, &

4 ^

YOLO ^Wtel^MM

SM YOLO

lfflft, {H^Mil^^fflm^iM. ^M YOLO

[1] Henry Y., Grantham K.P., Nelson H.Y. Automated fabric defect detection — A review [J]. Image and Vision Computing, 2011, 29(7):442-458.

[2] i^, ^sra, SiMMItt^MH^&lffift&M [J]. 2019, 27(5):57-61.

[3] Zou Z.X., Chen K.Y., Shi Z.W., et al. Object detection in 20 years: A survey [J]. Proceedings of the IEEE, 2023, 111(3):257-276.

[4] Viola P., Jones M. Rapid object detection using a boosted cascade of simple features [C] // Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2001, 1:I-511-I-518.

[5] Dalal N., Triggs B. Histograms of oriented gradients for human detection [C] // Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2005:886-893.

[6] Felzenszwalb P., Mcallester D., Ramanan D. A discriminatively trained, multiscale, deformable part model [C] // Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008:1-8.

[7] Redmon J., Farhadi A. Y0L09000: better, faster, stronger [C] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:6517-6525.

[8] Redmon J., Farhadi A. Y0L0v3: an incremental improvement [EB/OL]. (2018-4-8).

[9] Bochkovskiy A., Wang C.Y., Liao H.Y.M. Y0L0v4: optimal speed and accuracy of object detection [EB/OL]. (2020-4-23)[2023-5-29].

[10] Nelson J., Solawetz J. Y0L0v5 is here: state-of-the-art object detection at 140 FPS[EB/0L]. (2020-6-10).

[11] Li C., Li L., Jiang H., et al. Y0L0v6: a single-stage object detection framework for industrial applications [EB/OL]. (2022-9-7).

[12] Wang C.Y., Bochkovskiy A., Liao H.Y.M. Y0L0v7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [EB/OL]. (2022-7-6)

[13] Solawetz J., Francesco. What is Y0L0v8? The ultimate guide [EB/OL]. (2023-1-11).

[14] Zhang H., Zhang L., Li P., et al. Yarn-dyed fabric defect detection with Y0L0V2 based on deep convolution neural networks [C] // 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). Enshi: IEEE, 2018:170-174.

[15] ili. [D]. ttSH^f, 2021. 1.

[16] [D].

2021.

[17] S^ Y0L0v5-DCN l^tt^MH [J]. 2023, 51(03):8-14.

[18] «M, M«, Y0L0v7 [J/OL]. 2023:1-7.

References

[1] Henry Y., Grantham K.P., Nelson H.Y. Automated fabric defect detection — A review [J]. Image and Vision Computing, 2011, 29(7):442-458.

[2] Wang Mengtao, Li Yueyang, Du Shuai. Research progress of defect detection method based on machine vision [J]. Modern Textile Technology, 2019, 27(5):57-61.

[3] Zou Z.X., Chen K.Y., Shi Z.W., et al. Object detection in 20 years: A survey [J]. Proceedings of the IEEE, 2023, 111(3):257-276.

[4] Viola P., Jones M. Rapid object detection using a boosted cascade of simple features [C] // Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2001, 1:I-511-I-518.

[5] Dalal N., Triggs B. Histograms of oriented gradients for human detection [C] // Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2005:886-893.

[6] Felzenszwalb P., Mcallester D., Ramanan D. A discriminatively trained, multiscale, deformable part model [C] // Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008:1-8.

[7] Redmon J., Farhadi A. Y0L09000: better, faster, stronger [C] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:6517-6525.

[8] Redmon J., Farhadi A. Y0L0v3: an incremental improvement [EB/OL]. (2018-4-8).

[9] Bochkovskiy A., Wang C.Y., Liao H.Y.M. Y0L0v4: optimal speed and accuracy of object detection [EB/0L]. (2020-4-23)[2023-5-29].

[10] Nelson J., Solawetz J. Y0L0v5 is here: state-of-the-art object detection at 140 FPS[EB/0L]. (2020-6-10).

[11] Li C., Li L., Jiang H., et al. Y0L0v6: a single-stage object detection framework for industrial applications [EB/0L]. (2022-9-7).

[12] Wang C.Y., Bochkovskiy A., Liao H.Y.M. Y0L0v7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [EB/0L]. (2022-7-6)

[13] Solawetz J., Francesco. What is Y0L0v8? The ultimate guide [EB/0L]. (2023-1-11).

[14] Zhang H., Zhang L., Li P., et al. Yarn-dyed fabric defect detection with Y0L0V2 based on deep convolution neural networks [C] // 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). Enshi: IEEE, 2018:170-174.

[15] Peng Yannan. Research on fabric blemish detection based on deep learning [D]. Jiangxi University of Technology, 2021. 1.

[16] Xu Henghui. Algorithm Research on High-Speed 0nline Detection of Multi-Texture Fabric Defects Based on Deep Learning [D]. Guilin University of Technology, 2021.

[17] Hu Yuejie,JIANG Gaoming. Fabric defect detection based on Y0L0v5-DCN [J]. Cotton Textile Technology, 2023, 51(03):8-14.

[18] Guo Dianpeng,KE Haisen,LI Xiaolu et al. Fabric defect detection algorithm based on improved Y0L0v7 [J]. Cotton Textile Technology: 1-7.

i Надоели баннеры? Вы всегда можете отключить рекламу.