Научная статья на тему 'Additive manufacturing of self-organized crystal structures as novel materials for sensor mesofluidic chips based on layer-by-layer growth and their microcrystallomorphological analysis'

Additive manufacturing of self-organized crystal structures as novel materials for sensor mesofluidic chips based on layer-by-layer growth and their microcrystallomorphological analysis Текст научной статьи по специальности «Химические науки»

CC BY
133
16
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Computational nanotechnology
ВАК
Область наук
Ключевые слова
ADDITIVE TECHNOLOGIES / LAB-ON-A-CHIP MANUFACTURING / LAYER-BY-LAYER GROWTH / CONSERVATIVE SELF-ORGANIZATION / SOFT MATTER MESOFLUIDIC CHIPS / DISSIPATIVE SELF-ASSEMBLY

Аннотация научной статьи по химическим наукам, автор научной работы — Gradov Oleg Valeryevich, Gradova Margaret Alekseevna

Here we propose a novel approach towards lab-on-a-chip manufacturing combining synthesis of the chip material with its geometry formation controlled by the physical and chemical properties of its material, which are in these manufacturing conditions inseparable from its particular geometry arising from the principles of crystallography and microcrystallomorphological analysis. In this case, the problems of the chip assembly are replaced by the problems of the layered coating growth on the substrate, while the multilayer material formation provides the programmable variation of the resulting chip properties determined by the number and geometry of the converter layers. The chip / surface geometry is optimized by the free energy minimization in the course of conservative layer-by-layer (LBL) self-assembly process.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

АДДИТИВНАЯ ТЕХНОЛОГИЯ САМООРГАНИЗУЮЩИХСЯ КРИСТАЛЛИЧЕСКИХ СТРУКТУР КАК НОВЫХ МАТЕРИАЛОВ И СЕНСОРНЫХ МЕЗОФЛЮИДЫХ ЧИПОВ В КОНТЕКСТЕ ПОСЛОЙНЫХ МЕХАНИЗМОВ ИХ ФОРМИРОВАНИЯ В РАМКАХ МИКРОКРИСТАЛЛОМОРФОЛОГИЧЕСКОГО АНАЛИЗА

Нами предлагается качественно новый подход, объединяющий синтез материала чипа и формирование геометрии чипа, управляемой физико-химическими свойствами материала, не отделимыми для заданных условий получения от конкретной геометрии, определяющейся по критериям и принципам кристаллографии и микрокристалломорфологического анализа. При этом проблемы сборки чипов заменяются проблемами роста слоев и покрытий на подложках, а формирование многослойного материала, включая послойное темплатирование, обеспечивает придание чипу программируемых в соответствии с количеством и геометрией слоев-преобразователей свойств. Геометрия чипа / поверхности оптимизируется путем минимизации свободной энергии в ходе консервативной LBL-самоорганизации.

Текст научной работы на тему «Additive manufacturing of self-organized crystal structures as novel materials for sensor mesofluidic chips based on layer-by-layer growth and their microcrystallomorphological analysis»

6. НАНОСИСТЕМЫ

6.1. АДДИТИВНАЯ ТЕХНОЛОГИЯ САМООРГАНИЗУЮЩИХСЯ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

КАК НОВЫХ МАТЕРИАЛОВ И СЕНСОРНЫХ МЕЗОФЛЮИДЫХ ЧИПОВ В КОНТЕКСТЕ ПОСЛОЙНЫХ МЕХАНИЗМОВ ИХ ФОРМИРОВАНИЯ В РАМКАХ МИКРОКРИСТАЛЛОМОРФОЛОГИЧЕСКОГО АНАЛИЗА

Градов Олег Валерьевич, Институт энергетических проблем химической физики РАН им. В.Л. Тальрозе, Институт химической физики им. Н.Н. Семенова РАН, Москва, Россия. E-mail: [email protected]

Градова Маргарита Алексеевна, Институт химической физики им. Н.Н. Семенова РАН, Россия, Мо-сква.Е-mail: [email protected]

Аннотация. Нами предлагается качественно новый подход, объединяющий синтез материала чипа и формирование геометрии чипа, управляемой физико-химическими свойствами материала, не отделимыми для заданных условий получения от конкретной геометрии, определяющейся по критериям и принципам кристаллографии и микрокристалломорфологического анализа. При этом проблемы сборки чипов заменяются проблемами роста слоев и покрытий на подложках, а формирование многослойного материала, включая послойное темплатирование, обеспечивает придание чипу программируемых в соответствии с количеством и геометрией слоев-преобразователей свойств. Геометрия чипа / поверхности оптимизируется путем минимизации свободной энергии в ходе консервативной LBL-самоорганизации.

Ключевые слова: аддитивные технологии, лаборатории на чипе, послойный рост, консервативная самоорганизация, ме-зофлюидные чипы на частично упорядоченных средах, самосборка диссипативных структур.

6.1. ADDITIVE MANUFACTURING OF SELF-ORGANIZED CRYSTAL STRUCTURES AS NOVEL MATERIALS FOR SENSOR MESOFLUIDIC CHIPS BASED ON LAYER-BY-LAYER GROWTH AND THEIR MICROCRYSTALLOMORPHOLOGICAL ANALYSIS

Gradov Oleg V. Laboratory of Biological Effects of Nanostructures, V.L. Tal'rose Institute for Energy Problems of Chemical Physics of Russian Academy of Sciences, Moscow, Russia

Gradova Margaret A. Photobionics Laboratory, Dynamics of Biological and Chemical Processes Department, N.N. Semenov Institute of Chemical Physics of Russian Academy of Sciences, Moscow, Russia

Abstract. Here we propose a novel approach towards lab-on-a-chip manufacturing combining synthesis of the chip material with its geometry formation controlled by the physical and chemical properties of its material, which are in these manufacturing conditions inseparable from its particular geometry arising from the principles of crystallography and microcrystallomorphological analysis. In this case, the problems of the chip assembly are replaced by the problems of the layered coating growth on the substrate, while the multilayer material formation provides the programmable variation of the resulting chip properties determined by the number and geometry of the converter layers. The chip / surface geometry is optimized by the free energy minimization in the course of conservative layer-by-layer (LBL) self-assembly process.

Keywords: additive technologies, lab-on-a-chip manufacturing, layer-by-layer growth, conservative self-organization, soft matter mesofluidic chips, dissipative self-assembly.

The most important and obvious conceptual difference between the additive and subtractive technologies is layer-by-layer material deposition (additive mode) in accordance with the predetermined geometry instead of removal of the excess material from the 3D draft (subtractive mode).

Within the framework of this classical definition, additive technologies in a general physical sense of this term (lat.: sensu lato) could also include: atomic layer deposition for the on-surface complex structure engineering [1]; epitaxial LBL-assembly of the intercalation compounds and heterostructures

ADDITIVE MANUFACTURING OF SELF-ORGANIZED CRYSTAL STRUCTURES AS NOVEL MATERIALS FOR SENSOR MESOFLUIDIC CHIPS BASED ON LAYER-BY-LAYER GROWTH AND THEIR MICROCRYSTALLOMORPHOLOGICAL ANALYSIS

GradovO.V., Gradova M.A.

on the surfaces [2]; formation and electrochemical control over the metal-cluster molecular multilayers on the electrochemically active and specified crystallographic metal surfaces [3]; LBL growth during molecular-beam epitaxy on metal / alloy surfaces [4]; molecular layer deposition for multilayer polymer film growth [5], including sedimentation and other conservative self-assembly processes; LBL structure formation by ion beam sputter deposition and other ionic techniques [6,7]; conjugated polymer treatment at the molecular level using conjugated polyions as the targets and active agents altering the course of layer formation and their properties [8]; multilayer film synthesis by means of photocontrolled "command surfaces" in Langmuir / Langmuir-Blodgett techniques [9]; polyelectrolyte film synthesis via LBL adsorption [10]; etc.

A principal physical difference of such natural self-assembly mechanisms from the additive technology deposition procedures lies in the fact that structural ordering in them results from the programming of the subsequent layer microstructure by the preceding layer microstructure or / and by the external energy sources action performing the energy pumping function for self-assembly of different structures within the local areas (in the methods based on the active media irradiation and thermodynamic heterogeneity of the templating or catalytic surface), while in most technological operations the structure formation during transformation of the initial material into the product is hardware-controlled. Therefore, a system engineering difference between the LBL self-assembled structures / materials and those industrially fabricated is the presence of the external control system in the latter case, which regulates the layer geometry and structure topology, while in the former case it is functionally substituted by the internal self-control of the structure formation by the natural physical and chemical forces operating within the precursor material media. In computer-aided techniques (CAD-CAM-CAE chain) the structure geometry is specified from the CAD file containing all the conditions and characteristics of the tool impact on the material (the energy-dissipating agent). In the conventional self-assembly / self-organization processes including those in solid state synergetics and thermodynamics of the multilayer materials' assembly free energy is also utilized, but the equilibrium phase transitions upon crystallization are considered as conservative self-organization, while in the course of phase transitions in non-equilibrium systems (usually in soft matter) dissipative self-organization occurs. The structures obtained in the above cases are substantially different due to the different control factors and levels of ordering in the substance, i.e. different formalisms and workflow control structures.

For this reason, an especially attractive approach includes additive combination of the structure fabrication and microstructure formation in the multilayer material without separation of these processes in space and time, as well as without introducing subtractive operations into the technological process. It is especially typical for numerous sensors and analytical chips where the selectively deposited additional layers provide additive detection methods and new types of the analytical signal of the measuring device [11, 12]. However, all the existing applications of the self-assembly processes in microelectronics, both in solid state and soft matter physics [13-17], deal with the externally controlled elements of the material self-assembly, but the final product structure and geometry fabrication method is not based on self-organization

process since it is not self-controlled. Different tracing methods using Li algorithms / wave algorithms, beam algorithms, minimization methods, labyrinth methods with the solutions by the Hungarian algorithm / Kuhn-Munkres algorithm and solutions of the traveling salesmen problem, etc. are often used for the surface topology manufacturing. Nevertheless, ignoring the application of self-assembly in active medium for the channel tracing, the authors of such works implement at the software level the main principles of both conservative and non-conservative self-organization [18, 19]. We propose here to combine the processes of microstructure formation during crystallization of the analytical chip material (under the controlled conditions) with tracing of its geometry within the framework of the unified principles of geometry / structure optimization without using digital CAD tools for the product form / geometry determination, since in the approach proposed optimization and assembly are physically implemented and synchronized as the components of a single process - conservative self-organization of the chip material by the physically / chemically different layers' formation under controlled conditions onto the structuring surface.

Control upon the final product formation / growth/ assembly can be performed using different methods of experimental mineralogy and crystallography, while the product habit control can be performed within the framework of the microcrystallomo rphological analysis concepts [20], particularly using the principle of the genetic diagnostics of the microrelief («face relief») and crystallomorphological studies at the morphological level [21], including the real time control and multiparametric control of the microstructure growth based on the intrinsic properties of the emerging layers which in the course of their formation and physical and chemical modification can be the sources of the analytical signal and indicators of the processes occurring in the surrounding emergent medium.

Acknowledgments

This work was financially supported by the Russian Foundation for Basic Research (Project No 16-32-00914).

Literature

1. Knez M., Nielsch K., Niinisto L. (2007) Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials. 19 (21): 3425-3438.

2. Keller S.W., Kim H.N., Mallouk T.E. (1994) Layer-by-Layer Assembly of intercalation compounds and heterostructures on surfaces: Toward molecular beaker epitaxy. Journal of the American Chemical Society. 116 (19): 8817-8818.

3. Abe M., Michi T., Sato A. et al. (2003) Electrochemically Controlled Layer-by-Layer Deposition of Metal-Cluster Molecular Multilayers on Gold. Angewandte Chemie International Edition. 42 (25): 2912-2915.

4. Kunkel R., Poelsema B., Verheij L.K. et al. (1990) Reentrant layer-by-layer growth during molecular-beam epitaxy of metal-on-metal substrates. Physical Review Letters. 65 (6): C. 733.

5. Yoshimura T., Tatsuura S., Sotoyama W. (1991) Polymer films formed with monolayer growth steps by molecular layer deposition. Applied Physics Letters. 59 (4): 482-484.

6. Auciello O., Gifford K.D., Kingon A.I. (1994) Control of structure and electrical properties of lead-zirconium-titanate-based ferroelectric capacitors produced using a layer-by-layer ion beam sputter-deposition technique. Applied Physics Letters. 64 (21): 2873-2875.

7. Matsuura T., Murota J., Sawada Y. et al. (1993) Self-limited layer-by-layer etching of Si by alternated chlorine adsorption and Ar+ ion irradiation. Applied Physics Letters. 63 (20): 2803-2805.

8. Ferreira M., Rubner M.F. (1995) Molecular-level processing of conjugated polymers. 1. Layer-by-layer manipulation of conjugated polyions. Macromolecules. 28 (21): 7107-7114.

9. Seki T., Sakuragi M., Kawanishi Y. et al. (1993) "Command surfaces" of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers. Langmuir. 9 (1): 211-218.

10. Schmitt J., Gruenewald T., Decher G. et al. (1993) Internal structure of layer-by-layer adsorbed polyelectrolyte films: a neutron and X-ray reflectivity study. Macromolecules. 26 (25): 7058-7063.

11. Gradov O.V., Jablokov A.G. (2016) Novel morphometrics-on-a-chip: CCD- or CMOS-lab-on-a-chip based on discrete converters of different physical and chemical parameters of histological samples into the optical signals with positional sensitivity for morphometry of non-optical patterns. Journal of Biomedical Technologies. 2: 1-29.

12. Gradov O.V. (2017) Multi-functional microprobe lab-on-a-chip based on the active-pixel sensor with the position-sensitive cassette masks assembled from discrete converters of different biophysical and biochemical parameters into the optical response signals. International Journal of Modern Physics. 1: 23-28.

13. Yang J.K.W., Jung Y.S., Chang J.B. et al. (2010) Complex self-assembled patterns using sparse commensurate templates with locally varying motifs. Nature Nanotechnology. 5: 256-260.

14. Smits E.C.P., Mathijssen S.G.J., van Hal P.A. et al. (2008) Bottom-up organic integrated circuits. Nature. 455 (7215): 956-959.

15. Chang J.-B., Choi H.K., Hannon A.F. et al. (2014). Design rules for self-assembled block copolymer patterns using tiled templates. Nature Communications. 5: 3305.

16. Bita I., Yang J.K., Jung Y.S. et al. (2008) Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science. 321 (5891): 939-943.

17. Jung Y.S., Chang J.B., Verploegen E. et al. (2010) A path to ultranarrow patterns using self-assembled lithography. Nano Letters. 10 (3): 1000-1005.

18. Trumler W., Schlingmann S., Ungerer T. et al. (2008) Self-optimized Routing in a Network on-a-Chip. In: Biologically-Inspired Collaborative Computing. B., Springer: 199-212.

19. Collet J.H., Zajac P., Psarakis M. et al. (2011) Chip self-organization and fault tolerance in massively defective multicore arrays. IEEE Transactions on Dependable and Secure Computing. 8 (2): 207-217.

20. Feklichev V.G. (1966) Microcrystallomorphological analysis, Moscow: Science, 200 p.

21. Feklichev V.G. (1970) Microcrystallomorphological research, Moscow: Science, 176 p.

i Надоели баннеры? Вы всегда можете отключить рекламу.