№ 12 (129)
декабрь, 2024 г.
A METHOD OF CALCULATING THE TECHNOLOGICAL INDICATORS OF MULTI-FACETED POLYMER MATERIAL COLUMNS IN COTTON GINNING MACHINES
Timur Tuychiyev
Associate Professor, Tashkent Institute of Textile and Light Industry, Uzbekistan, Tashkent
Sarvara Muxamedjanova
PhD student,
Bukhara engineering technological institute, Uzbekistan, Bukhara, E-mail: [email protected]
СПОСОБ РАСЧЕТА ТЕХНОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ КОЛОНН ИЗ МНОГОГРАННОГО ПОЛИМЕРНОГО МАТЕРИАЛА В ХЛОПКООЧИСТИТЕЛЬНЫХ МАШИНАХ
Туйчиев Тимур Ортикович
доцент,
Ташкентский институт текстильной и легкой промышленности,
Республика Узбекистан, г. Ташкент
Мухамеджанова Сарвара Фатхитдиновна
аспирант,
Бухарский инженерно-технологический институт, Республика Узбекистан, г. Бухара
ABSTRACT
This method for calculating the technological indicators of multi-faceted polymer material columns in cotton ginning machines provides a systematic approach for evaluating their performance. By conducting rigorous experimental tests and analyzing the results, researchers and engineers can optimize the design and manufacturing of these columns to further enhance cotton ginning efficiency and fiber quality. Continued research and development in this area will contribute to sustainable and efficient cotton processing, ultimately benefiting the entire cotton industry. Cotton ginning machines play a pivotal role in the cotton processing industry, separating cotton fibers from seeds and preparing them for further processing. Multi-faceted polymer material columns are increasingly being used in ginning machines due to their advantages over traditional materials like metal. These columns, due to their unique shape and properties, contribute significantly to improved ginning efficiency and cotton fiber quality. However, accurately evaluating their technological performance requires a robust method for calculating their key indicators. This article presents a comprehensive method for calculating the technological indicators of multi-faceted polymer material columns in cotton ginning machines.
АННОТАЦИЯ
Данный метод расчета технологических показателей колонн из многогранного полимерного материала в хлопкоочистительных машинах обеспечивает системный подход к оценке их производительности. Проводя строгие экспериментальные испытания и анализируя результаты, исследователи и инженеры могут оптимизировать конструкцию и производство этих колонн для дальнейшего повышения эффективности хлопкоочистительной обработки и качества волокна. Продолжение исследований и разработок в этой области будет способствовать устойчивой и эффективной переработке хлопка, что в конечном итоге принесет пользу всей хлопковой отрасли. Хлопкоочистительные машины играют решающую роль в хлопкоперерабатывающей промышленности, отделяя хлопковые волокна от семян и подготавливая их к дальнейшей переработке. Многогранные колонны из полимерного материала все чаще используются в хлопкоочистительных машинах из-за их преимуществ перед традиционными материалами, такими как металл. Эти колонны, благодаря своей уникальной форме и свойствам, вносят значительный вклад в повышение эффективности хлопкоочистительной обработки и качества хлопкового волокна. Однако для точной оценки их технологических показателей требуется надежный метод расчета их ключевых показателей. В данной статье представлена комплексная методика расчета технологических показателей колонн многогранного полимерного материала в хлопкоочистительных машинах.
Библиографическое описание: Muxamedjanova S.F., Tuychiyev T.O. A METHOD OF CALCULATING THE TECHNOLOGICAL INDICATORS OF MULTI-FACETED POLYMER MATERIAL COLUMNS IN COTTON GINNING MACHINES // Universum: технические науки : электрон. научн. журн. 2024. 12(129). URL: https://7universum.com/ru/tech/archive/item/18860
A UNIVERSUM:
№ 12 (129)_¿Л ТЕХНИЧЕСКИЕ НАУКИ_декабрь. 2024 г.
Keywords: technological indicators, efficient cotton processing, cotton ginning machines, high-frequency vibration, cleaner component, calculation scheme.
Ключевые слова: технологические показатели, эффективная переработка хлопка, хлопкоочистительные машины, высокочастотная вибрация, очиститель, схема расчета.
Introduction. Scientific research works aimed at innovative techniques and technologies for the cotton gin industry around the world, effective use of modern science and technology achievements, improvement of existing techniques are carried out. In this industry, the direction of development and research of technological constructions of colosniks with efficient and resource-efficient working bodies in the cleaner component, designed for cleaning cotton raw materials from large impurities, is of great importance.
In order to improve the existing constructions and increase the efficiency of cleaning, we have developed a series of high-efficiency colosnik fence constructions, which allow to preserve the natural quality indicators of cotton raw materials and seeds to the maximum [1, 2, 3].
The next column grid used in the fiber cleaner has a different number of multi-edge columns with edges, which are selected during the transfer of the fiber material so that each successive column has one more edge than the previous one [4].
Research and methods. In this case, due to the fact that the number of edges of the colosniks is different during the rotation of the saw drum, the impact force and direction are different. In this case, with the increase in the number of the edges of the columns, the impulse impact force affecting the cotton raw material along the edges of the columns decreases, and with the decrease in the number of the edges of the columns, on the contrary, the impact force increases.
This interaction between the cotton raw material and the polyhedral (different number) colosniks allows to separate the dirty compounds in the cotton raw material with different mass and stuck at different depths.
Taking into account the random force of the cotton raw material on the plastic column in the cleaner component, which is designed to clean cotton raw materials from large impurities, the following vibration equation of the column was obtained to study the vibration character and analyze the main indicators:
+ B fc + cx + % x = M(F) ±S(F), (1) dt dt /
here m- the given mass of plastic colosnik;
ц - constant nonlinearity coefficient; ci, C2 are the stiffness coefficients of the strap support, в is the dissipation coefficient, M(Fe) is the mathematically expected random resistance component of the resistance shown by the cotton wool.
At initial t=0, x=0; x0 taking into account the conditions, the solution of the problem was obtained in PEHM: the value of the average displacement of the axis of the plastic column Xaverage=(1,4-1,6)T0-3 m obtaining, in which the amplitude of the oscillation ДХ=(1,8-2,1)10-3 m will be between. Colosnik's high-frequency vibration (Fe) the resistive force corresponds to the frequency 5.
т = 1,0Нс2/м, с = 0,8 • 104Н/ м, с2 =1,2-104Н/м, М (F) = 10,5 Н if, SFe = (0,7 -1,0)Н Acceleration, velocity and displacement fragments of a plastic column mounted on a belt tensioner with nonlinear restoring force are presented in Figure i. It should be noted that the vibration frequency of the speaker is (40...55)Hz. In this case, the high-frequency component in the colossal vibration is (147-178) Hz. The low-frequency generator of the forced vibration corresponds to the frequency of rotation of the saw drum in the UXK-type aggregate component, and the high-frequency generator corresponds to the number of columns in the section.
As can be seen from the figure 1, it is a colossal mean in forced oscillations Хср = (1,4^1,6)•Ю-3м,
deviates in magnitude, and the width of the oscillation is in the calculated values of the indicators ДХ = (1,8+2,1)10-3 м. consisted. Swing width for columns mounted on a strap support ДХ = (2,2+2,5)•Ю-3м. consisted [4]. When the obtained results were compared, it was revealed that the vibration amplitude increased by (10-15)% due to the lightening of the presented plastic column construction.
In this way X andX values also changes. The width of the vibration speed is from 0.6 m/s to 1.25 m/s, and the amplitude of vibration and acceleration is within the calculated parameters of the system (6,5^10) м/с2 changes at the limit. The vibration speed and acceleration frequency will be according to the high-frequency generator under the influence of the technological stress of the cotton raw material.
№ 12 (129)
aeKaGpb, 2024 r.
Figure 1. The graph of the change of the displacement, speed and acceleration indicators of the plastic columns caused by the variation of the force exerted by the cotton raw material
It is known that as the mass of the vibrating system increases, a large force is required to drive it, that is, the vibration amplitude of the plastic column decreases as the mass increases. Colossian mass 0,7 hc2/m from to 1,5 hc2/m with increasing up to , the vibration width of the plastic colosnik follows a nonlinear law 1,85 10-3 m from to 0,65 10-3m decreases to. Regarding the vibration system under consideration, it should be noted that the decrease in speed and acceleration with the increase in the colossal mass was considered non-linear. AX, AX
and AX It is a characteristic feature that the vibration width decreases intensively with increasing mass. This is due to the fact that the belt support has a nonlinear stiffness characteristic. In the process of cleaning cotton raw materials from large impurities, it is important to limit the amplitude of colosniks. Because these vibrations directly affect the size of the gap between the
columns and the saw cylinder. The results of the research showed that the increase in the stiffness coefficient of the belt support leads to a proportional decrease in the vibration amplitude of the plastic columns.
Plastic colosniks (0,6^1,2) -10-
a nonlinear
constructor of the belt tension stiffness coefficient to ensure that it vibrates under amplitude (0,8^1,0)104 should have a value of , while the stiffness coefficient c1 = (1,2 + 1,4) • 104H/m should form.
Figure 2 shows the graphical dependences of displacement, speed and acceleration indicators that occur in the variation of force caused by cotton raw materials of plastic columns mounted on a strap support with nonlinear stiffness. As the resistance shown by the cotton raw material increases from 8.5 N to 20 N (average value), the displacement of the columns
0,65 -10-3 m from to 2,6 -10-
should from.
a)
6)
Figure 2. (a) - calculation scheme and (6)- angular velocity of the saw drum
3
m
m
№ 12 (129)
декабрь, 2024 г.
In order to prevent the cotton wool from falling into the gap between the columns, the amplitude of the vibration of the columns is increased and the technological gap between the saw drum and the columns is reduced due to the experimental results of the amplitude of the plastic columns (1,0 ^1,4) 10-3 m should not exceed. In this case, as the force acting on the column increases, the deformation rate of the belt support decreases, which leads to a decrease in the vibration amplitude of the column.
From the analysis of the comparative comparison of the research results with the research of the metal column mounted on the belt support, it was found that in the recommended option the speed and acceleration X and X the vibration amplitude is (10-13)% more than that of cylindrical columns. This indicates that the impulse force exerted on the cotton raw material by the plastic columns is (12-15)% higher than that of the existing cleaner columns. The mass value of the recommended plastic columns (1,1^1,3) hc2/m consisted. In this case, (1,0^1,4)10-3 m the recommended value of the indicators to ensure a vibration amplitude of not less than C2=(0,8-1,0)-104 H/m, C1=(1,2-1,4)-104 H/m, F0=(15-20)H, Pp=(5,0-7,0) consists of t/h.
It is known that the increase of the angular speed of the saw cylinder above (3R35) rad/s leads to an increase in the angular speed of the cotton raw material lint in the saw cylinder, and the cotton lint and colosniks do not interact and pass through the cleaning zone. In order to justify the breaking of the fluff, we consider the calculation scheme (Figure 3) and construct the differential vibration equation of the fluff of raw cotton:
mJl P + m (щ + щ sin KKt)2 • ¡2 + R2 sin2 <p + R cos <p\ •
2
•Rsin< + mngh + -\¡¡2 + R cos2 < • F = 0
[11] taking into account the source, we write the equation (4) in the following form:
d2h Rh . . .2 g , _ „ h
—г1 + —L (œn + œ sinK,t) h = 0 ; = —
dt2 ¡, v n 1 l ^ H l
Then the solution to this differential equation is:
hi = ho cos fJ +
2 7
^n ¡1
Rœ2 + g
sin fj (4)
From the result of formula (4) it was found that when t=0 the value of the initial moment is h1 = h0, the angle of deviation of the tuft of fluffy fibers deviates at an angle of 600... 620 with respect to the radius of the saw drum.
Given that the fluff tufts are 0.022m long, h = 0,019 m will be equal to. Therefore, in order to ensure the angular deviation of the cotton wool in the range less than 56^63, the angular speed of the saw cylinder is 31.4 rad/s, the calculated break is selected within the limits h: =(0.018^0.621 m).
Conclusion. Theoretical studies show that cotton raw material hitting the four-sided column with great force in the initial zone is crushed and the impurities contained in it are separated. Then, with the increase in the number of edges in each next column during the movement of cotton raw materials, the force of interaction of cotton raw materials with column edges decreases, but its frequency and direction of interaction increases. This ensures the efficiency of cleaning the fibrous material from large impurities without damaging the seed coat.
(3)
References:
1. А.С. 912785. Колосниковая решетка очистителя волокнистого материала. Джураев А. БИ N10, 1982.
2. А. Джураев. Колосниковая решетка очистителя волокнистого материала. А.С. №874776, бюлл № 39, 1981
3. Джураев и др. Колосниковая решетка очистителя волокнистого материала. Патент ДР 03338, Бюлл. №1, 2007.
4. Е.И. Битус, А.Дж. Джураев, А.Ф. Плеханов, К.Э. Разумеев, Д.С. Ташпулатов. Колосниковая решетка очистителя волокнистого материала // Патент на изобретение РФ №2668544 по заявке №2017143328 от 12.12.2017 г., Федеральная служба по интеллектуальной собственности ФИПС РФ(РОСПАТЕНТ).
5. Джабаров Г. и др. Первичная обработка хлопка. Легкая индустрия. М.: 1978. 430 с.
6. Мирошниченко Г.И., Тютин П.Н., Лугачев А.Е. К вопросу Расчета и конструирования очистительных машин // Хлопковая промышленность. 1974. № 1. С. 16.
7. A. Djuraev, O. MurodovGroundation of the parameters of grate bar on elastic support with non-linear hardness. Theeuropeansciencereview. № 7-8 2017. July-August. Vienna • Prague 2017. page-109-111.